- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
在生成树的过程中,把已经在生成树中的节点看作一个集合,把剩下的节点看作另外一个集合,从连接两个集合的边中选择一条权值最小的边即可。
首先任选一个节点,例如节点1,把它放在集合 U 中,U={1},那么剩下的节点为 V-U={2,3,4,5,6,7},集合 V 是图的所有节点集合。
现在只需要看看连接两个集合(U 和 V-U)的边中,哪一条边的权值最小,把权值最小的边关联的节点加入集合 U 中。从上图可以看出,连接两个集合的 3 条边中,1-2 边的权值最小,选中它,把节点 2 加入集合 U 中,U={1,2},V - U={3,4,5,6},如下图所示。
再从连接两个集合(U 和 V-U)的边中选择一条权最小的边。从上图看出,在连接两个集合的4条边中,节点2到节点7的边权值最小,选中这条边,把节点7加入集合U={1,2,7}中,V-U={3,4,5,6}。
如此下去,直到 U=V 结束,选中的边和所有的节点组成的图就是最小生成树。这就是 Prim 算法。
直观地看图,很容易找出集合 U 到 集合 U-V 的边中哪条边的权值是最小的,但在程序中穷举这些边,再找最小值,则时间复杂度太高。可以通过设置数组巧妙解决这个问题,closet[j] 表示集合 V-U 中的节点 j 到集合 U 中的最邻近点,lowcost[j] 表示集合 V-U 中节点 j 到集合 U 中最邻近点的边值,即边(j,closest[j]) 的权值。
例如在上图中,节点 7 到集合 U 中的最邻近点是2,cloeest[7]=2。节点 7 到最邻近点2 的边值为1,即边(2,7)的权值,记为 lowcost[7]=1,如下图所示。
所以只需在集合 V - U 中找到 lowcost[] 只最小的节点即可。
1 初始化
令集合 U={u0},u0 属于 V,并初始化数组 closest[]、lowcost[]和s[]。
2 在集合 V-U 中找 lowcost 值最小的节点t,即 lowcost[t]=min{lowcost[j]},j 属于 V-U,满足该公式的节点 t 就是集合 V-U 中连接 U 的最邻近点。
3 将节点 t 加入集合 U 中。
4 如果集合 V - U 为空,则算法结束,否则转向步骤 5。
5 对集合 V-U 中的所有节点 j 都更新其 lowcost[] 和 closest[]。if(C[t][j]<lowcost[j]){lowcost[j]=C[t][j];closest[j]=t;},转向步骤2。
按照上面步骤,最终可以得到一棵权值之和最小的生成树。
图 G=(V,E)是一个无向连通带权图,如下图所示。
1 初始化。假设 u0=1,令集合 U={1},集合 V-U={2,3,4,5,6,7},s[1]=true,初始化数组 closest[]:除了节点1,其余节点均为1,表示集合 V-U 中的节点到集合 U 的最邻近点均为1.lowcost[]:节点1到集合 V-U 中节点的边值。closest[] 和 lowcost[] 如下图所示。
初始化后的图为:
2 找 lowcost 最小的节点,对应的 t=2,选中的边和节点如下图。
3 加入集合U中。将节点 t 加入集合 U 中,U={1,2},同时更新 V-U={3,4,5,6,7}
4 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 2 的邻接点是节点 3 和节点7。
C[2][3]=20<lowcost[3]=无穷大,更新最邻近距离 lowcost[3]=20,最邻近点 closest[3]=2;
C[2][7]=1<lowcost[7]=36,更新最邻近距离 lowcost[7]=1,最邻近点 closest[7]=2;
更新后的 closest[] 和 lowcost[] 如下图所示。
更新后的集合如下图所示:
5 找 lowcost 最小的节点,对应的 t=7,选中的边和节点如下图。
6 加入集合U中。将节点 t 加入集合 U 中,U={1,2,7},同时更新 V-U={3,4,5,6}
7 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 7 的邻接点是节点 3、4、5、6。
C[7][3]=4<lowcost[3]=20,更新最邻近距离 lowcost[3]=4,最邻近点 closest[3]=7;
C[7][4]=4<lowcost[4]=无穷大,更新最邻近距离 lowcost[3]=9,最邻近点 closest[4]=7;
C[7][5]=4<lowcost[5]=无穷大,更新最邻近距离 lowcost[3]=16,最邻近点 closest[5]=7;
C[7][6]=4<lowcost[6]=28,更新最邻近距离 lowcost[3]=25,最邻近点 closest[6]=7;
更新后的 closest[] 和 lowcost[] 如下图所示。
更新后的集合如下图所示:
8 找 lowcost 最小的节点,对应的 t=3,选中的边和节点如下图。
9 加入集合U中。将节点 t 加入集合 U 中,U={1,2,3,7},同时更新 V-U={4,5,6}
10 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 3 的邻接点是节点 4。
C[3][4]=15>lowcost[4]=9,不更新
closest[] 和 lowcost[] 数组不改变。
更新后的集合如下图所示:
11 找 lowcost 最小的节点,对应的 t=4,选中的边和节点如下图。
12 加入集合U中。将节点 t 加入集合 U 中,U={1,2,3,4,7},同时更新 V-U={5,6}
13 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 4 的邻接点是节点 5。
C[4][5]=3<lowcost[5]=16,更新最邻近距离 lowcost[5]=3,最邻近点 closest[5]=4;
更新后的 closest[] 和 lowcost[] 如下图所示。
更新后的集合如下图所示:
14 找 lowcost 最小的节点,对应的 t=5,选中的边和节点如下图。
15 加入集合U中。将节点 t 加入集合 U 中,U={1,2,3,4,5,7},同时更新 V-U={6}
16 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 5 的邻接点是节点 6。
C[5][6]=17<lowcost[6]=25,更新最邻近距离 lowcost[6]=17,最邻近点 closest[6]=5;
更新后的集合如下图所示:
17 找 lowcost 最小的节点,对应的 t=6,选中的边和节点如下图。
18 加入集合U中。将节点 t 加入集合 U 中,U={1,2,3,4,5,6,7},同时更新 V-U={}
19 更新。对 t 在集合 V-U 中的每一个邻接点 j,都可以借助 t 更新。节点 6 在集合 V-U 中无邻接点。不用更新 closest[] 和 lowcost[] 。
20 得到的最小生成树如下。最小生成树的权值之和为 57.
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!