- 使用 Spring Initializr 创建 Spring Boot 应用程序
- 在Spring Boot中配置Cassandra
- 在 Spring Boot 上配置 Tomcat 连接池
- 将Camel消息路由到嵌入WildFly的Artemis上
** 从PyTorch模型导出到ONNX文件是通过调用PyTorch的torch.onnx.export接口实现**。
** **torch.onnx.export:如果pytorch模型既不是torch.jit.ScriptModule也不是orch.jit.ScriptFunction,它(torch.nn.Module)会run一次pytorch模型,以便将其转换为TorchScript graph被导出(相当于torch.jit.trace,跟踪其执行情况,然后将跟踪的模型导出到onnx文件)。生成的onnx文件包含一个二进制protocol buffer,其中包含你导出的模型的网络结构和参数。
** **参数说明:
** **(1).model:要导出的pytorch模型,可以为torch.nn.Module, torch.jit.ScriptModule或torch.jit.ScriptFunction。
** **(2).args:模型的输入,可以为tuple或torch.Tensor。
** **(3).f:一个类似文件的对象或一个包含文件名的字符串。A binary protocol buffer will be written to this file。
** **(4).export_params=True:默认值为True。如果为True,则将导出所有参数。如果要导出未经训练的模型,需将此参数设置为False。如果为True,导出的模型将首先将其所有参数作为参数,其顺序由model.stat_dict().values()指定。
** **(5).verbose=False:默认值为False。如果为True,则打印正在导出到标准输出的模型的描述。此外,最终的ONNX graph将包含来自导出模型的字段"doc_string",其中提到了"model"的源代码位置。
** **(6).training=TrainingMode.EVAL:默认值为TrainingMode.EVAL。TrainingMode.EVAL:以推理模式导出模型。TrainingMode.PRESERVE:如果model.training为False,则以推理模式导出模型;如果model.training为True,则以训练模式导出模型。TrainingMode.TRAINING:以训练模式导出模型,禁用可能会干扰训练的优化。
** **(7).input_names=None:类型为str的列表,默认为空列表。按顺序分配给graph的输入节点的名称。如果不设置的话,会自动分配一些简单的名字,如input.1。ONNX模型的每个输入和输出tensor都有一个名字。
** **(8).output_names=None:类型为str的列表,默认为空列表。按顺序分配给graph的输出节点的名称。如果不设置的话,会自动分配一些简单的名字或数字,如logits、25。ONNX模型的每个输入和输出tensor都有一个名字。
** **(9).operator_export_type=None:enum类型,默认为None。None通常表示"`OperatorExportTypes.ONNX",但是,如果PyTorch是用"DPYTORCH_ONNX_CAFFE2_BUNDLE"构建的,则None表示"OperatorExportTypes.ONNX_ATEN_FALLBACK"。OperatorExportTypes.ONNX:将所有操作导出为常规ONNX操作(在默认操作域中(opset domain))。OperatorExportTypes.ONNX_FALLTHROUGH:尝试将所有操作转换为默认操作域中的标准ONNX操作。OperatorExportTypes.ONNX_ATEN:所有的ATen操作(ops)都导出为ATen操作。OperatorExportTypes.ONNX_ATEN_FALLBACK:尝试将每个ATen操作导出为常规ONNX操作。
** **(10).opset_version=None:int类型,在PyTorch 1.11.0版本中,默认值为9,此值范围必须在[7, 15]范围内。每个PyTorch版本对应的值范围不同。ONNX算子集版本。参考:https://github.com/onnx/onnx/blob/main/docs/Operators.md
** **(11).do_constant_folding=True:默认为True。应用constant-folding优化。constant-folding将用预先计算的常量节点替换一些具有所有常量输入的操作。
** **(12).dynamic_axes=None:字典类型,默认为空字典。默认情况下,导出的模型将所有输入和输出tensors的shape设置为与args中给出的完全匹配。指定输入输出tensor的哪些维度是动态的,ONNX默认所有参与运算的tensor都是静态的(tensor的shape不发生改变)。
** **(13).keep_initializers_as_inputs=None:bool类型,默认为None。如果为True,则导出的graph中所有初始化程序(通常对应于参数)也将作为输入添加到graph。如果为False,则初始化程序不会作为输入添加到graph,并且仅将非参数输入添加为输入。
** **(14).custom_opsets=None:字典类型,默认为空字典。schema字典:Key(str):opset域名;Value(int):opset版本。
** **(15).export_modules_as_functions=False:bool类型或set of type of nn.Module,默认为False。将所有nn.Module forward调用导出为ONNX中的本地函数(local function)。或指示要在ONNX中导出为本地函数的特定模块类型。
** **以下是将LeNet-5.pth导出到LeNet-5.onnx的示例:
** **1.加载LeNet-5.pth:https://blog.csdn.net/fengbingchun/article/details/125462001
此模型的产生见上面的链接,因为此示例代码中会用到另外一个目录下python脚本中的函数,需导入,代码段如下:
import sys
sys.path.append("..") # 为了导入pytorch目录中的内容
from pytorch.lenet5.test_lenet5_mnist import LeNet5, list_files, get_image_label
加载LeNet-5.pth模型的代码段如下:需将model设置为评估模式
def load_pytorch_model(model_name):
model = LeNet5(n_classes=10).to('cpu') # 实例化一个LeNet5网络对象
model.load_state_dict(torch.load(model_name)) # 加载pytorch模型
model.eval() # 将网络设置为评估模式
return model
2.导出到onnx文件,并验证此onnx文件的正确性,代码段如下:
def export_model_from_pytorch_to_onnx(pytorch_model, onnx_model_name):
batch_size = 1
# input to the model
x = torch.randn(batch_size, 1, 32, 32)
out = pytorch_model(x)
#print("out:", out)
# export the model
torch.onnx.export(pytorch_model, # model being run
x, # model input (or a tuple for multiple inputs)
onnx_model_name, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=9, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes
'output' : {0 : 'batch_size'}})
def verify_onnx_model(onnx_model_name):
# model is an in-memory ModelProto
model = onnx.load(onnx_model_name)
#print("the model is:\n{}".format(model))
# check the model
try:
onnx.checker.check_model(model)
except onnx.checker.ValidationError as e:
print(" the model is invalid: %s" % e)
exit(1)
else:
print(" the model is valid")
3.准备测试图像,此测试图像也来自于上面的链接:一共10幅,0到9各一幅,如下图所示,注意:训练图像背景色为黑色,而测试图像背景色为白色:
def image_preprocess(image_names, image_name_suffix):
input_data = []
labels = []
for image_name in image_names:
label = get_image_label(image_name, image_name_suffix)
labels.append(label)
img = cv2.imread(image_name, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (32, 32))
# MNIST图像背景为黑色,而测试图像的背景色为白色,识别前需要做转换
img = cv2.bitwise_not(img)
norm_img = cv2.normalize(img, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
norm_img = norm_img.reshape(1, 1, 32, 32).astype('float32')
#print(f"img type: {type(norm_img)}, shape: {norm_img.shape}")
input_data.append(norm_img)
return input_data, labels
4.通过ONNX Runtime进行推理,验证LeNet-5.onnx,代码段如下:
def softmax(x):
x = x.reshape(-1)
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def postprocess(result):
return softmax(np.array(result)).tolist()
def inference(model_name, image_names, input_data, labels):
session = onnxruntime.InferenceSession(model_name, None)
# get the name of the first input of the model
input_name = session.get_inputs()[0].name
count = 0
for data in input_data:
raw_result = session.run([], {input_name: data})
res = postprocess(raw_result)
idx = np.argmax(res)
image_name = image_names[count][image_names[count].rfind("/")+1:]
print(f" image name: {image_name}, actual value: {labels[count]}, predict value: {idx}, percentage: {round(res[idx]*100, 4)}%")
count += 1
执行结果如下:与上面链接中的结果一致
今天我在一个 Java 应用程序中看到了几种不同的加载文件的方法。 文件:/ 文件:// 文件:/// 这三个 URL 开头有什么区别?使用它们的首选方式是什么? 非常感谢 斯特凡 最佳答案 file
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用或专业知识的支持,但这个问题可能会引起辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the he
我有一个 javascript 文件,并且在该方法中有一个“测试”方法,我喜欢调用 C# 函数。 c# 函数与 javascript 文件不在同一文件中。 它位于 .cs 文件中。那么我该如何管理 j
需要检查我使用的文件/目录的权限 //filePath = path of file/directory access denied by user ( in windows ) File fil
我在一个目录中有很多 java 文件,我想在我的 Intellij 项目中使用它。但是我不想每次开始一个新项目时都将 java 文件复制到我的项目中。 我知道我可以在 Visual Studio 和
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 这个问题似乎不是关于 a specific programming problem, a software
我有 3 个组件的 Twig 文件: 文件 1: {# content-here #} 文件 2: {{ title-here }} {# content-here #}
我得到了 mod_ldap.c 和 mod_authnz_ldap.c 文件。我需要使用 Linux 命令的 mod_ldap.so 和 mod_authnz_ldap.so 文件。 最佳答案 从 c
我想使用PIE在我的项目中使用 IE7。 但是我不明白的是,我只能在网络服务器上使用 .htc 文件吗? 我可以在没有网络服务器的情况下通过浏览器加载的本地页面中使用它吗? 我在 PIE 的文档中看到
我在 CI 管道中考虑这一点,我应该首先构建和测试我的应用程序,结果应该是一个 docker 镜像。 我想知道使用构建环境在构建服务器上构建然后运行测试是否更常见。也许为此使用构建脚本。最后只需将 j
using namespace std; struct WebSites { string siteName; int rank; string getSiteName() {
我是 Linux 新手,目前正在尝试使用 ginkgo USB-CAN 接口(interface) 的 API 编程功能。为了使用 C++ 对 API 进行编程,他们提供了库文件,其中包含三个带有 .
我刚学C语言,在实现一个程序时遇到了问题将 test.txt 文件作为程序的输入。 test.txt 文件的内容是: 1 30 30 40 50 60 2 40 30 50 60 60 3 30 20
如何连接两个tcpdump文件,使一个流量在文件中出现一个接一个?具体来说,我想“乘以”一个 tcpdump 文件,这样所有的 session 将一个接一个地按顺序重复几次。 最佳答案 mergeca
我有一个名为 input.MP4 的文件,它已损坏。它来自闭路电视摄像机。我什么都试过了,ffmpeg , VLC 转换,没有运气。但是,我使用了 mediainfo和 exiftool并提取以下信息
我想做什么? 我想提取 ISO 文件并编辑其中的文件,然后将其重新打包回 ISO 文件。 (正如你已经读过的) 我为什么要这样做? 我想开始修改 PSP ISO,为此我必须使用游戏资源、 Assets
给定一个 gzip 文件 Z,如果我将其解压缩为 Z',有什么办法可以重新压缩它以恢复完全相同的 gzip 文件 Z?在粗略阅读了 DEFLATE 格式后,我猜不会,因为任何给定的文件都可能在 DEF
我必须从数据库向我的邮件 ID 发送一封带有附件的邮件。 EXEC msdb.dbo.sp_send_dbmail @profile_name = 'Adventure Works Admin
我有一个大的 M4B 文件和一个 CUE 文件。我想将其拆分为多个 M4B 文件,或将其拆分为多个 MP3 文件(以前首选)。 我想在命令行中执行此操作(OS X,但如果需要可以使用 Linux),而
快速提问。我有一个没有实现文件的类的项目。 然后在 AppDelegate 我有: #import "AppDelegate.h" #import "SomeClass.h" @interface A
我是一名优秀的程序员,十分优秀!