gpt4 book ai didi

1029. Two City Scheduling 两地调度

转载 作者:大佬之路 更新时间:2024-01-31 14:15:40 25 4
gpt4 key购买 nike

题目地址:https://leetcode.com/problems/two-city-scheduling/

题目描述

There are 2N people a company is planning to interview. The cost of flying the i-th person to city A is costs[i][0], and the cost of flying the i-th person to city B is costs[i][1].

Return the minimum cost to fly every person to a city such that exactly N people arrive in each city.

Example 1:

Input: [[10,20],[30,200],[400,50],[30,20]]
Output: 110
Explanation: 
The first person goes to city A for a cost of 10.
The second person goes to city A for a cost of 30.
The third person goes to city B for a cost of 50.
The fourth person goes to city B for a cost of 20.

The total minimum cost is 10 + 30 + 50 + 20 = 110 to have half the people interviewing in each city.

Note:

1、 1<=costs.length<=100
2、 Itisguaranteedthatcosts.lengthiseven.
3、 1<=costs[i][0],costs[i][1]<=1000

题目大意

给出了偶数个候选人去A和B两个城市的花费,现在要合理分配,让两个城市的人一样多,并且总花费最少。求最少花费。

解题方法

小根堆

思路怎么来的,是我划了一个表格:

编号
去A的花费 10 30 400 30
去B的花费 20 200 50 40
B-A +20 +170 -350 -10

根据表格我们可以想到,如果让丙去A,那么会比让丙去B多花350,这样多花费的钱划不来。所以,我们一定让去B比去A花费节省最多的人去B,反之,去A比去B花费节省最多的人去A。故这是一个贪心算法。

具体做法是我们求出每个人B-A的值,让去B能省下最省钱的一半人先去B,剩下的一半人去A.我们可以使用堆或者排序去完成这个事情。

class Solution(object):
    def twoCitySchedCost(self, costs):
        """
        :type costs: List[List[int]]
        :rtype: int
        """
        heap = []
        for i, cost in enumerate(costs):
            heapq.heappush(heap, (cost[1] - cost[0], i))
        res = 0
        count = 0
        while heap:
            cost, pos = heapq.heappop(heap)
            if count < len(costs) / 2:
                res += costs[pos][1]
            else:
                res += costs[pos][0]
            count += 1
        return res

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

排序

道理和上面类似。

class Solution(object):
    def twoCitySchedCost(self, costs):
        """
        :type costs: List[List[int]]
        :rtype: int
        """
        _len = len(costs)
        cost_diff = []
        for i, cost in enumerate(costs):
            cost_diff.append((cost[1] - cost[0], i))
        cost_diff.sort()
        res = 0
        count = 0
        for i, (diff, pos) in enumerate(cost_diff):
            if i < _len / 2:
                res += costs[pos][1]
            else:
                res += costs[pos][0]
        return res

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2022

DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有

本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com