gpt4 book ai didi

R相当于Stata的Absorb

转载 作者:行者123 更新时间:2023-12-05 09:16:50 26 4
gpt4 key购买 nike

我想控制一个包含一百多个水平的因子变量,而不将该控制的结果输出到汇总表。请注意,我也对复制 Stata 命令的速度感兴趣,而不仅仅是对输出进行表面更改。

在 Stata 中,我可以像这样使用“absorb”:

use http://www.stata-press.com/data/r14/abdata.dta, clear
. xtreg n w k i.year, fe

Fixed-effects (within) regression Number of obs = 1,031
Group variable: id Number of groups = 140

R-sq: Obs per group:
within = 0.6277 min = 7
between = 0.8473 avg = 7.4
overall = 0.8346 max = 9

F(10,881) = 148.56
corr(u_i, Xb) = 0.5666 Prob > F = 0.0000

------------------------------------------------------------------------------
n | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
w | -.2731482 .0551503 -4.95 0.000 -.3813896 -.1649068
k | .5648036 .0212211 26.62 0.000 .5231537 .6064535
|
year |
1977 | -.0347963 .0188134 -1.85 0.065 -.0717206 .0021281
1978 | -.0583286 .0190916 -3.06 0.002 -.0957989 -.0208583
1979 | -.070047 .0190414 -3.68 0.000 -.1074187 -.0326752
1980 | -.0889378 .0189788 -4.69 0.000 -.1261867 -.0516889
1981 | -.1401502 .0186309 -7.52 0.000 -.1767163 -.1035841
1982 | -.1603768 .0188132 -8.52 0.000 -.1973008 -.1234528
1983 | -.1621103 .0222902 -7.27 0.000 -.2058585 -.1183621
1984 | -.1258136 .0282391 -4.46 0.000 -.1812373 -.0703899
|
_cons | 2.255419 .1772614 12.72 0.000 1.907515 2.603323
-------------+----------------------------------------------------------------
sigma_u | .64723143
sigma_e | .12836859
rho | .96215208 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(139, 881) = 126.32 Prob > F = 0.0000

使用吸收去除固定效应

. reghdfe n w k, absorb(id year)
(converged in 7 iterations)

HDFE Linear regression Number of obs = 1,031
Absorbing 2 HDFE groups F( 2, 881) = 362.67
Prob > F = 0.0000
R-squared = 0.9922
Adj R-squared = 0.9908
Within R-sq. = 0.4516
Root MSE = 0.1284

------------------------------------------------------------------------------
n | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
w | -.2731482 .0551503 -4.95 0.000 -.3813896 -.1649068
k | .5648036 .0212211 26.62 0.000 .5231537 .6064535
-------------+----------------------------------------------------------------
Absorbed | F(147, 881) = 120.660 0.000 (Joint test)
------------------------------------------------------------------------------

Absorbed degrees of freedom:
---------------------------------------------------------------+
Absorbed FE | Num. Coefs. = Categories - Redundant |
-------------+-------------------------------------------------|
id | 140 140 0 |
year | 8 9 1 |
---------------------------------------------------------------+

最佳答案

我能找到的最佳替代方案是 lfe 包,它实现了具有高维固定效应或/和工具变量的模型。

您可以像这样在竖线后指定固定效果:

felm(n ~ w _ k | year, df)

年份系数将被吸收到最终规范中。这种方法的问题在于它现在允许您预测观察结果。

编辑:更新

R 库 estimatr 具有函数 lm_robust,它有一个吸收 FE 的 fixed_effects 参数,比我在网上找到的任何库都要好。强烈推荐。

关于R相当于Stata的Absorb,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49639238/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com