- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一段代码使用协作组来执行一些操作。因此我编译我的代码:
/usr/local/cuda/bin/nvcc -arch=sm_61 -gencode=arch=compute_61,code=sm_61, --device-c -g -O2 foo.cu
然后我尝试调用设备链接器:
/usr/local/cuda/bin/nvcc -arch=sm_61 -gencode=arch=compute_61,code=sm_61, -g -dlink foo.o
然后它会产生错误:
ptxas error : File uses too much global constant data (0x10100 bytes, 0x10000 max)
问题是由我分配常量内存的方式引起的:
__constant__ float d_cnst_centers[CONST_MEM / sizeof(float)];
其中 CONST_MEM = 65536 字节,这是我从 SM_61 的设备查询中获得的。但是,如果我将常量内存减少到 64536 之类的东西,问题就消失了。几乎就像在编译期间出于某些目的“保留”常量内存一样。我搜索了 CUDA 文档,但没有找到令人满意的答案。使用可用的最大常量内存是否安全?为什么会出现这个问题?
编辑:这是触发 SM_61 错误的代码片段:
#include <algorithm>
#include <vector>
#include <type_traits>
#include <cuda_runtime.h>
#include <cfloat>
#include <iostream>
#include <cooperative_groups.h>
using namespace cooperative_groups;
struct foo_params {
float * points;
float * centers;
int * centersDist;
int * centersIndex;
int numPoints;
};
__constant__ float d_cnst_centers[65536 / sizeof(float)];
template <int R, int C>
__device__ int
nearestCenter(float * points, float * pC) {
float mindist = FLT_MAX;
int minidx = 0;
int clistidx = 0;
for(int i=0; i<C;i++) {
clistidx = i*R;
float dist;
{
float *point = points;
float *center = &pC[clistidx];
float accum;
for(int i = 0; i<R; i++) {
float delta = point[i] - center[i];
accum += delta*delta;
}
dist = sqrt(accum);
}
/* ... */
}
return minidx;
}
template<int R, int C, bool bRO, bool ROWMAJ=true>
__global__ void getNeatestCenter(struct foo_params params) {
float * points = params.points;
float * centers = params.centers;
int * centersDist = params.centersDist;
int * centersIndex = params.centersIndex;
int numPoints = params.numPoints;
grid_group grid = this_grid();
{
int idx = blockIdx.x*blockDim.x+threadIdx.x;
if (idx < numPoints) {
centersIndex[idx] = nearestCenter<R,C>(&points[idx*R], d_cnst_centers);
}
}
/* ... other code */
}
int main () {
// foo paramaters, for illustration purposes
struct foo_params param;
param.points = NULL;
param.centers = NULL;
param.centersDist = NULL;
param.centersIndex = NULL;
param.numPoints = 1000000;
void *p_params = ¶m;
int minGridSize = 0, blockSize = 0;
cudaOccupancyMaxPotentialBlockSize(
&minGridSize,
&blockSize,
(void*)getNeatestCenter<128, 64, true>,
0,
0);
dim3 dimGrid(minGridSize, 1, 1), dimBlock(blockSize, 1, 1);
cudaLaunchCooperativeKernel((void *)getNeatestCenter<32, 32, true>, dimGrid, dimBlock, &p_params);
}
问题似乎是由线路引起的:
grid_group grid = this_grid();
这似乎在没有已知原因的情况下使用了大约 0x100 字节的常量内存。
最佳答案
这个答案是推测性的,因为 OP 没有提供最少但完整的重现代码。
GPU 包含多个常量内存库,用于程序存储的不同部分。其中一个银行供程序员使用。重要的是,CUDA 标准数学库代码使用相同的库,因为数学库代码通过函数内联成为程序员代码的一部分。在过去,这是显而易见的,因为整个 CUDA 数学库最初只是几个头文件。
一些数学函数在内部需要小的常量数据表。具体示例是 sin
、cos
、tan
。当使用这些数学函数时,程序员可用的 __constant__
数据量从 64KB 减少了少量。以下是一些用于演示目的的示例程序,使用 CUDA 8 工具链和 -arch=sm_61
编译:
#include <stdio.h>
#include <stdlib.h>
#define CONST_MEM (65536)
__constant__ float d_cnst_centers[CONST_MEM / sizeof(float)] = {1};
__global__ void kernel (int i, float f)
{
float r = d_cnst_centers[i] * expf(f);
printf ("r=%15.8f\n", r);
}
int main (void)
{
kernel<<<1,1>>>(0,25.0f);
cudaDeviceSynchronize();
return EXIT_SUCCESS;
}
这可以很好地编译并在运行时打印 r=72004902912.00000000
。现在让我们将 expf
更改为 sinf
:
#include <stdio.h>
#include <stdlib.h>
#define CONST_MEM (65536)
__constant__ float d_cnst_centers[CONST_MEM / sizeof(float)] = {1};
__global__ void kernel (int i, float f)
{
float r = d_cnst_centers[i] * sinf(f);
printf ("r=%15.8f\n", r);
}
int main (void)
{
kernel<<<1,1>>>(0,25.0f);
cudaDeviceSynchronize();
return EXIT_SUCCESS;
}
这会在编译期间引发错误:ptxas 错误:文件使用了过多的全局常量数据(0x10018 字节,最大 0x10000)
如果我们改用 double 函数 sin
,则需要更多常量内存:
#include <stdio.h>
#include <stdlib.h>
#define CONST_MEM (65536)
__constant__ float d_cnst_centers[CONST_MEM / sizeof(float)] = {1};
__global__ void kernel (int i, float f)
{
float r = d_cnst_centers[i] * sin((double)f);
printf ("r=%15.8f\n", r);
}
int main (void)
{
kernel<<<1,1>>>(0,25.0f);
cudaDeviceSynchronize();
return EXIT_SUCCESS;
}
我们收到错误信息:ptxas 错误:文件使用了过多的全局常量数据(0x10110 字节,最大 0x10000)
关于CUDA 不能使用所有可用的常量内存,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62773270/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!