gpt4 book ai didi

r - 使用 R Shiny 中的操作按钮将行从一个 DT 移动到其他 DT

转载 作者:行者123 更新时间:2023-12-05 09:09:01 24 4
gpt4 key购买 nike

更新

我正在尝试使用 shinyDT 制作应用,similar to the accepted answer from Shree here .你,我想添加以下内容:

  1. 扩展 Shree 的解决方案,以便左侧(源)的 DT 中的项目可以移动到右侧和后面的多个表并且是可扩展的,以便我可以决定我想在右边放多少张 table 。也就是说,左侧表格中的不同项目可以放在右侧的不同表格中。
  2. 此外,在右侧的每个表格旁边都有双箭头按钮,以便可以通过单击双箭头按钮来添加或删除表格中的所有项目,而不仅仅是用于移动所选变量的单箭头按钮, like here , 但仍然能够决定是否显示它们。
  3. 右侧的表格即使在空的时候也可见。

有人可以帮忙吗?

最佳答案

如前所述shiny modules是解决这个问题的优雅方式。你必须传入一些 reactives 来接收行,你必须返回一些 reactives 来发送行/告诉主表它应该删除它刚刚发送的行。

一个完整的示例如下所示:

library(shiny)
library(DT)

receiver_ui <- function(id, class) {
ns <- NS(id)
fluidRow(
column(width = 1,
actionButton(ns("add"),
label = NULL,
icon("angle-right")),
actionButton(ns("add_all"),
label = NULL,
icon("angle-double-right")),
actionButton(ns("remove"),
label = NULL,
icon("angle-left")),
actionButton(ns("remove_all"),
label = NULL,
icon("angle-double-left"))),
column(width = 11,
dataTableOutput(ns("sink_table"))),
class = class
)
}

receiver_server <- function(input, output, session, selected_rows, full_page, blueprint) {
## data_exch contains 2 data.frames:
## send: the data.frame which should be sent back to the source
## receive: the data which should be added to this display
data_exch <- reactiveValues(send = blueprint,
receive = blueprint)

## trigger_delete is used to signal the source to delete the rows whihc just were sent
trigger_delete <- reactiveValues(trigger = NULL, all = FALSE)

## render the table and remove .original_order, which is used to keep always the same order
output$sink_table <- renderDataTable({
dat <- data_exch$receive
dat$.original_order <- NULL
dat
})

## helper function to move selected rows from this display back
## to the source via data_exch
shift_rows <- function(selector) {
data_exch$send <- data_exch$receive[selector, , drop = FALSE]
data_exch$receive <- data_exch$receive[-selector, , drop = FALSE]
}

## helper function to add the relevant rows
add_rows <- function(all) {
rel_rows <- if(all) req(full_page()) else req(selected_rows())
data_exch$receive <- rbind(data_exch$receive, rel_rows)
data_exch$receive <- data_exch$receive[order(data_exch$receive$.original_order), ]
## trigger delete, such that the rows are deleted from the source
old_value <- trigger_delete$trigger
trigger_delete$trigger <- ifelse(is.null(old_value), 0, old_value) + 1
trigger_delete$all <- all
}

observeEvent(input$add, {
add_rows(FALSE)
})

observeEvent(input$add_all, {
add_rows(TRUE)
})

observeEvent(input$remove, {
shift_rows(req(input$sink_table_rows_selected))
})

observeEvent(input$remove_all, {
shift_rows(req(input$sink_table_rows_current))
})

## return the send reactive to signal the main app which rows to add back
## and the delete trigger to remove rows
list(send = reactive(data_exch$send),
delete = trigger_delete)
}


ui <- fluidPage(
tags$head(tags$style(HTML(".odd {background: #DDEBF7;}",
".even {background: #BDD7EE;}",
".btn-default {min-width:38.25px;}",
".row {padding-top: 15px;}"))),
fluidRow(
actionButton("add", "Add Table")
),
fluidRow(
column(width = 6, dataTableOutput("source_table")),
column(width = 6, div(id = "container")),
)
)

server <- function(input, output, session) {
orig_data <- mtcars
orig_data$.original_order <- seq(1, NROW(orig_data), 1)
my_data <- reactiveVal(orig_data)

handlers <- reactiveVal(list())

selected_rows <- reactive({
my_data()[req(input$source_table_rows_selected), , drop = FALSE]
})

all_rows <- reactive({
my_data()[req(input$source_table_rows_current), , drop = FALSE]
})

observeEvent(input$add, {
old_handles <- handlers()
n <- length(old_handles) + 1
uid <- paste0("row", n)
insertUI("#container", ui = receiver_ui(uid, ifelse(n %% 2, "odd", "even")))
new_handle <- callModule(
receiver_server,
uid,
selected_rows = selected_rows,
full_page = all_rows,
## select 0 rows data.frame to get the structure
blueprint = orig_data[0, ])

observeEvent(new_handle$delete$trigger, {
if (new_handle$delete$all) {
selection <- req(input$source_table_rows_current)
} else {
selection <- req(input$source_table_rows_selected)
}
my_data(my_data()[-selection, , drop = FALSE])
})

observe({
req(NROW(new_handle$send()) > 0)
dat <- rbind(isolate(my_data()), new_handle$send())
my_data(dat[order(dat$.original_order), ])
})
handlers(c(old_handles, setNames(list(new_handle), uid)))
})

output$source_table <- renderDataTable({
dat <- my_data()
dat$.original_order <- NULL
dat
})
}


shinyApp(ui, server)

解释

一个模块包含 UI 和服务器,并且由于命名空间技术,名称只需要在一个模块内是唯一的(并且每个模块以后也必须有一个唯一的名称)。该模块可以通过传递给 callModulereactives 与主应用程序通信(请注意,我仍在使用旧功能,因为我尚未更新我的 Shiny 库), 或者从服务器函数返回。

在主应用程序中,我们有一个按钮,它动态插入 UI 并调用 callModule 来激活逻辑。 observers 也在同一调用中生成,以使服务器逻辑正常工作。

关于r - 使用 R Shiny 中的操作按钮将行从一个 DT 移动到其他 DT,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62782414/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com