gpt4 book ai didi

r - 具有来自 selectInput 的多个条件的 Shiny R observeEvent

转载 作者:行者123 更新时间:2023-12-05 08:40:25 27 4
gpt4 key购买 nike

我正在开发一个 Shiny 的应用程序,但我遇到了 observeEvent() 的困难在创建全部源自 selectInput() 的多个输入的复杂表达式时起作用.

我的问题是 observeEvent() 中的一些表达式功能在启动时被触发,导致事件过早执行(即我的 actionButton() 在启动时被禁用,因为它应该是,但是当至少选择一个输入时被启用,理想情况下我只希望它被启用选择所有输入时)。如下所示:

  observeEvent({
#input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
enable("set_cohort_button")
})

作为引用,我使用的是 shinyjs由@daattali 在github 上找到的包启用/禁用actionButton() .

除了最后一个输入(即 input$cohort_L0 )似乎在启动时被初始化所以 observeEvent()启用 actionButton仅当 input$cohort_L0被选中。如果您运行我的应用程序并从上到下按顺序选择输入,则会显示 observeEvent()正在按预期工作。当我决定随机选择输入并发现选择 input$cohort_L0 时,我才发现它没有按预期工作。是我需要选择以启用 actionButton() 的唯一输入.

代码的 UI 部分如下所示:

# Variable selection
selectInput('cohort_IDvar', 'ID', choices = ''),
selectInput('cohort_index_date', 'Index date', choices = ''),
selectInput('cohort_EOF_date', 'End of follow-up date', choices = ''),
selectInput('cohort_EOF_type', 'End of follow-up reason', choices = ''),
selectInput('cohort_Y_name', 'Outcome', choices = ''),
selectInput('cohort_L0', 'Baseline covariate measurements', choices = '', multiple=TRUE, selectize=TRUE),

我正在使用 observe()收集上传数据集的列名,将它们定向到 selectInput()如下:

  ### Collecting column names of dataset and making them selectable input
observe({
value <- c("",names(cohort_data()))
updateSelectInput(session,"cohort_IDvar",choices = value)
updateSelectInput(session,"cohort_index_date",choices = value)
updateSelectInput(session,"cohort_EOF_date",choices = value)
updateSelectInput(session,"cohort_EOF_type",choices = value)
updateSelectInput(session,"cohort_L0",choices = value)
})

我研究过使用参数 ignoreInit = TRUE但它对我在 observeEvent() 中有多个表达式的情况没有任何作用.我还研究了在 selectInput() 中强制不进行默认选择。但没有运气。

所以我的两部分问题是如何执行 observEvent()当仅选择所有输入时/如何停止在启动时初始化输入?

我的整个代码:

library(shiny)
library(shinyjs)

ui <- fluidPage(

useShinyjs(),
navbarPage("Test",
tabPanel("Cohort",
sidebarLayout(
sidebarPanel(
fileInput("cohort_file", "Choose CSV File",
multiple = FALSE,
accept = c("text/csv",
"text/comma-separated-values,text/plain",
".csv")),
# Horizontal line ----
tags$hr(),
# Variable selection
selectInput('cohort_IDvar', 'ID', choices = ''),
selectInput('cohort_index_date', 'Index date', choices = ''),
selectInput('cohort_EOF_date', 'End of follow-up date', choices = ''),
selectInput('cohort_EOF_type', 'End of follow-up reason', choices = ''),
selectInput('cohort_Y_name', 'Outcome', choices = ''),
selectInput('cohort_L0', 'Baseline covariate measurements', choices = '', multiple=TRUE, selectize=TRUE),
# Horizontal line ----
tags$hr(),
disabled(
actionButton("set_cohort_button","Set cohort")
)
#actionButton("refresh_cohort_button","Refresh")
),
mainPanel(
DT::dataTableOutput("cohort_table"),
tags$div(id = 'cohort_r_template')
)
)
)
)
)

server <- function(input, output, session) {

################################################
################# Cohort code
################################################

cohort_data <- reactive({
inFile_cohort <- input$cohort_file
if (is.null(inFile_cohort))
return(NULL)
df <- read.csv(inFile_cohort$datapath,
sep = ',')
return(df)
})

rv <- reactiveValues(cohort.data = NULL)
rv <- reactiveValues(cohort.id = NULL)
rv <- reactiveValues(cohort.index.date = NULL)
rv <- reactiveValues(cohort.eof.date = NULL)
rv <- reactiveValues(cohort.eof.type = NULL)

### Creating a reactiveValue of the loaded dataset
observeEvent(input$cohort_file, rv$cohort.data <- cohort_data())

### Displaying loaded dataset in UI
output$cohort_table <- DT::renderDataTable({
df <- cohort_data()
DT::datatable(df,options=list(scrollX=TRUE, scrollCollapse=TRUE))
})

### Collecting column names of dataset and making them selectable input
observe({
value <- c("",names(cohort_data()))
updateSelectInput(session,"cohort_IDvar",choices = value)
updateSelectInput(session,"cohort_index_date",choices = value)
updateSelectInput(session,"cohort_EOF_date",choices = value)
updateSelectInput(session,"cohort_EOF_type",choices = value)
updateSelectInput(session,"cohort_L0",choices = value)
})

### Creating selectable input for Outcome based on End of Follow-Up unique values
observeEvent(input$cohort_EOF_type,{
updateSelectInput(session,"cohort_Y_name",choices = unique(cohort_data()[,input$cohort_EOF_type]))
})

### Series of observeEvents for creating vector reactiveValues of selected column
observeEvent(input$cohort_IDvar, {
rv$cohort.id <- cohort_data()[,input$cohort_IDvar]
})
observeEvent(input$cohort_index_date, {
rv$cohort.index.date <- cohort_data()[,input$cohort_index_date]
})
observeEvent(input$cohort_EOF_date, {
rv$cohort.eof.date <- cohort_data()[,input$cohort_EOF_date]
})
observeEvent(input$cohort_EOF_type, {
rv$cohort.eof.type <- cohort_data()[,input$cohort_EOF_type]
})

### ATTENTION: Following eventReactive not needed for example so commenting out
### Setting id and eof.type as characters and index.date and eof.date as Dates
#cohort_data_final <- eventReactive(input$set_cohort_button,{
# rv$cohort.data[,input$cohort_IDvar] <- as.character(rv$cohort.id)
# rv$cohort.data[,input$cohort_index_date] <- as.Date(rv$cohort.index.date)
# rv$cohort.data[,input$cohort_EOF_date] <- as.Date(rv$cohort.eof.date)
# rv$cohort.data[,input$cohort_EOF_type] <- as.character(rv$cohort.eof.type)
# return(rv$cohort.data)
#})

### Applying desired R function
#set_cohort <- eventReactive(input$set_cohort_button,{
#function::setCohort(data.table::as.data.table(cohort_data_final()), input$cohort_IDvar, input$cohort_index_date, input$cohort_EOF_date, input$cohort_EOF_type, input$cohort_Y_name, input$cohort_L0)
#})

### R code template of function
cohort_code <- eventReactive(input$set_cohort_button,{
paste0("cohort <- setCohort(data = as.data.table(",input$cohort_file$name,"), IDvar = ",input$cohort_IDvar,", index_date = ",input$cohort_index_date,", EOF_date = ",input$cohort_EOF_date,", EOF_type = ",input$cohort_EOF_type,", Y_name = ",input$cohort_Y_name,", L0 = c(",paste0(input$cohort_L0,collapse=","),"))")
})

### R code template output fo UI
output$cohort_code <- renderText({
paste0("cohort <- setCohort(data = as.data.table(",input$cohort_file$name,"), IDvar = ",input$cohort_IDvar,", index_date = ",input$cohort_index_date,", EOF_date = ",input$cohort_EOF_date,", EOF_type = ",input$cohort_EOF_type,", Y_name = ",input$cohort_Y_name,", L0 = c(",paste0(input$cohort_L0,collapse=","),"))")
})

### Disables cohort button when "Set cohort" button is clicked
observeEvent(input$set_cohort_button, {
disable("set_cohort_button")
})

### Disables cohort button if different dataset is loaded
observeEvent(input$cohort_file, {
disable("set_cohort_button")
})

### This is where I run into trouble
observeEvent({
#input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
enable("set_cohort_button")
})

### Inserts heading and R template code in UI when "Set cohort" button is clicked
observeEvent(input$set_cohort_button, {
insertUI(
selector = '#cohort_r_template',
ui = tags$div(id = "cohort_insertUI",
h3("R Template Code"),
verbatimTextOutput("cohort_code"))
)
})

### Removes heading and R template code in UI when new file is uploaded or when input is changed
observeEvent({
input$cohort_file
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}, {
removeUI(
selector = '#cohort_insertUI'
)
})

}

# Run the application
shinyApp(ui = ui, server = server)

最佳答案

作为触发事件传递给 observeEvent 的代码块是

{
input$cohort_IDvar
input$cohort_index_date
input$cohort_EOF_date
input$cohort_EOF_type
input$cohort_Y_name
input$cohort_L0
}

这意味着,就像任何其他响应式(Reactive)代码块一样,当这些值中的任何一个发生变化时,该响应式(Reactive)代码块将被视为无效,因此观察者将触发。所以你看到的行为是有道理的。

听起来您想要的是仅在设置所有值时才执行。这听起来像是对 req() 函数的一个很好的使用!尝试这样的事情:

observe({
req(input$cohort_IDvar, input$cohort_index_date, input$cohort_EOF_date, ...)
enable("set_cohort_button")
})

请注意,对于 shinyjs::enable() 具体来说,您可以改用 shinyjs::toggleState() 函数。我认为在这种情况下,req() 函数是更好的选择。

关于r - 具有来自 selectInput 的多个条件的 Shiny R observeEvent,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55544176/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com