gpt4 book ai didi

r - R : Take 3 中 MI 数据的描述性统计

转载 作者:行者123 更新时间:2023-12-05 08:26:50 27 4
gpt4 key购买 nike

作为 R 初学者,我发现弄清楚如何计算乘法插补数据的描述性统计数据非常困难(比运行其他一些基本分析更难,例如相关性和回归)。

这些类型的问题以道歉(Descriptive statistics (Means, StdDevs) using multiply imputed data: R)开头,但尚未得到回答(https://stats.stackexchange.com/questions/296193/pooling-basic-descriptives-from-several-multiply-imputed-datasets-using-mice)或很快投下反对票。

这里是 miceadds 函数 ( https://www.rdocumentation.org/packages/miceadds/versions/2.10-14/topics/stats0 ) 的描述,我发现很难理解以 mids 格式存储的数据。

我已经使用 summary(complete(imp)) 获得了一些输出,例如平均值、中位数、最小值、最大值,但很想知道如何获得额外的汇总输出(例如,偏斜/峰度、标准差、方差)。

从上面的以前的海报借来的插图:

  > imp <- mice(nhanes, seed = 23109)

iter imp variable
1 1 bmi hyp chl
1 2 bmi hyp chl
1 3 bmi hyp chl
1 4 bmi hyp chl
1 5 bmi hyp chl
2 1 bmi hyp chl
2 2 bmi hyp chl
2 3 bmi hyp chl

> summary(complete(imp))
age bmi hyp chl
1:12 Min. :20.40 1:18 Min. :113
2: 7 1st Qu.:24.90 2: 7 1st Qu.:186
3: 6 Median :27.40 Median :199
Mean :27.37 Mean :194
3rd Qu.:30.10 3rd Qu.:218
Max. :35.30 Max. :284

有人会花时间说明如何使用 mids 对象来获得基本描述吗?

最佳答案

以下是您可以执行的一些步骤,以更好地了解每个步骤后 R 对象会发生什么。我还建议您查看本教程: https://gerkovink.github.io/miceVignettes/

library(mice)

# nhanes object is just a simple dataframe:
data(nhanes)
str(nhanes)
#'data.frame': 25 obs. of 4 variables:
# $ age: num 1 2 1 3 1 3 1 1 2 2 ...
#$ bmi: num NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...
#$ hyp: num NA 1 1 NA 1 NA 1 1 1 NA ...
#$ chl: num NA 187 187 NA 113 184 118 187 238 NA ...

# you can generate multivariate imputation using mice() function
imp <- mice(nhanes, seed=23109)

#The output variable is an object of class "mids" which you can explore using str() function
str(imp)
# List of 17
# $ call : language mice(data = nhanes)
# $ data :'data.frame': 25 obs. of 4 variables:
# ..$ age: num [1:25] 1 2 1 3 1 3 1 1 2 2 ...
# ..$ bmi: num [1:25] NA 22.7 NA NA 20.4 NA 22.5 30.1 22 NA ...
# ..$ hyp: num [1:25] NA 1 1 NA 1 NA 1 1 1 NA ...
# ..$ chl: num [1:25] NA 187 187 NA 113 184 118 187 238 NA ...
# $ m : num 5
# ...
# $ imp :List of 4
#..$ age: NULL
#..$ bmi:'data.frame': 9 obs. of 5 variables:
#.. ..$ 1: num [1:9] 28.7 30.1 22.7 24.9 30.1 35.3 27.5 29.6 33.2
#.. ..$ 2: num [1:9] 27.2 30.1 27.2 25.5 29.6 26.3 26.3 30.1 30.1
#.. ..$ 3: num [1:9] 22.5 30.1 20.4 22.5 27.4 22 26.3 27.4 35.3
#.. ..$ 4: num [1:9] 27.2 22 22.7 21.7 25.5 27.2 24.9 30.1 22
#.. ..$ 5: num [1:9] 28.7 28.7 20.4 21.7 25.5 22.5 22.5 25.5 22.7
#...


#You can extract individual components of this object using $, for example
#To view the actual imputation for bmi column
imp$imp$bmi
# 1 2 3 4 5
# 1 28.7 27.2 22.5 27.2 28.7
# 3 30.1 30.1 30.1 22.0 28.7
# 4 22.7 27.2 20.4 22.7 20.4
# 6 24.9 25.5 22.5 21.7 21.7
# 10 30.1 29.6 27.4 25.5 25.5
# 11 35.3 26.3 22.0 27.2 22.5
# 12 27.5 26.3 26.3 24.9 22.5
# 16 29.6 30.1 27.4 30.1 25.5
# 21 33.2 30.1 35.3 22.0 22.7

# The above output is again just a regular dataframe:
str(imp$imp$bmi)
# 'data.frame': 9 obs. of 5 variables:
# $ 1: num 28.7 30.1 22.7 24.9 30.1 35.3 27.5 29.6 33.2
# $ 2: num 27.2 30.1 27.2 25.5 29.6 26.3 26.3 30.1 30.1
# $ 3: num 22.5 30.1 20.4 22.5 27.4 22 26.3 27.4 35.3
# $ 4: num 27.2 22 22.7 21.7 25.5 27.2 24.9 30.1 22
# $ 5: num 28.7 28.7 20.4 21.7 25.5 22.5 22.5 25.5 22.7

# complete() function returns imputed dataset:
mat <- complete(imp)

# The output of this function is a regular data frame:
str(mat)
# 'data.frame': 25 obs. of 4 variables:
# $ age: num 1 2 1 3 1 3 1 1 2 2 ...
# $ bmi: num 28.7 22.7 30.1 22.7 20.4 24.9 22.5 30.1 22 30.1 ...
# $ hyp: num 1 1 1 2 1 2 1 1 1 1 ...
# $ chl: num 199 187 187 204 113 184 118 187 238 229 ...

# So you can run any descriptive statistics you need with this object
# Just like you would do with a regular dataframe:
> summary(mat)
# age bmi hyp chl
# Min. :1.00 Min. :20.40 Min. :1.00 Min. :113.0
# 1st Qu.:1.00 1st Qu.:24.90 1st Qu.:1.00 1st Qu.:187.0
# Median :2.00 Median :27.50 Median :1.00 Median :204.0
# Mean :1.76 Mean :27.48 Mean :1.24 Mean :204.9
# 3rd Qu.:2.00 3rd Qu.:30.10 3rd Qu.:1.00 3rd Qu.:229.0
# Max. :3.00 Max. :35.30 Max. :2.00 Max. :284.0

关于r - R : Take 3 中 MI 数据的描述性统计,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50143902/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com