gpt4 book ai didi

python - 如何在 Python 中将二叉树打印为节点结构

转载 作者:行者123 更新时间:2023-12-05 08:20:31 24 4
gpt4 key购买 nike

我有一个 python code将字符串数学表达式转换为二叉树并对树的节点进行排序,使左 child 始终小于右 child 。我想按以下顺序打印二叉树。

例如考虑数学表达式 ((2 * 75)/4)。 buildParseTree() 将字符串表达式转换为树,printNodeInLevels() 重新排列节点,使左子节点在每个级别都小于右子节点。操作数 < 运算符和运算符的顺序为 '+' < '-' < '*' < '/'。如果树的结构是这样的

  +
/\
4 *
/\
2 75

我想打印如下。我该怎么办?因为数学表达式的长度一直在变化,例如 (24 * 2)、((5 - 1) * (2/3))、(20 - (5 + 4)) 等

Node("+") #root
.addkid(Node("*") #right child at level 1
.addkid(Node("75")) #right child at level 2
.addkid(Node("2")) #left child at level 2
)
.addkid(Node("4")) #left child at level 1

我已经找到了按顺序遍历模式按级别打印节点的方法。如果我按如下方式调用该方法,它将打印以下内容:

pt = buildParseTree("( ( 2 * 74 ) / 4 )")

printNodesInLevels(pt)

输出:

/ 
4 *
2 74

最佳答案

这是我创建的用于打印任何二叉树结构的函数。

它非常通用,只需要一个起始节点(root)和一个函数(或 lambda)来获取标签和左/右子节点:

您通常会在您的 Node 类中像这样使用它:

printBTree(rootNode,lambda n: (n.operand, n.left, n.right) )

# assuming the Node class has a string property named operand
# and left,right properties that return a Node or None

二次方程 (-b +/- sqrt(b**2 - 4*a*c))/(2*a) 可以这样打印:

#         /
# ___/ \__
# +/- *
# / \ / \
# - sqrt 2 a
# \ \
# b -
# __/ \_
# ** *
# / \ / \
# b 2 4 *
# / \
# a c

这是 printBTree 函数:

import functools as fn

def printBTree(node, nodeInfo=None, inverted=False, isTop=True):

# node value string and sub nodes
stringValue, leftNode, rightNode = nodeInfo(node)

stringValueWidth = len(stringValue)

# recurse to sub nodes to obtain line blocks on left and right
leftTextBlock = [] if not leftNode else printBTree(leftNode,nodeInfo,inverted,False)

rightTextBlock = [] if not rightNode else printBTree(rightNode,nodeInfo,inverted,False)

# count common and maximum number of sub node lines
commonLines = min(len(leftTextBlock),len(rightTextBlock))
subLevelLines = max(len(rightTextBlock),len(leftTextBlock))

# extend lines on shallower side to get same number of lines on both sides
leftSubLines = leftTextBlock + [""] * (subLevelLines - len(leftTextBlock))
rightSubLines = rightTextBlock + [""] * (subLevelLines - len(rightTextBlock))

# compute location of value or link bar for all left and right sub nodes
# * left node's value ends at line's width
# * right node's value starts after initial spaces
leftLineWidths = [ len(line) for line in leftSubLines ]
rightLineIndents = [ len(line)-len(line.lstrip(" ")) for line in rightSubLines ]

# top line value locations, will be used to determine position of current node & link bars
firstLeftWidth = (leftLineWidths + [0])[0]
firstRightIndent = (rightLineIndents + [0])[0]

# width of sub node link under node value (i.e. with slashes if any)
# aims to center link bars under the value if value is wide enough
#
# ValueLine: v vv vvvvvv vvvvv
# LinkLine: / \ / \ / \ / \
#
linkSpacing = min(stringValueWidth, 2 - stringValueWidth % 2)
leftLinkBar = 1 if leftNode else 0
rightLinkBar = 1 if rightNode else 0
minLinkWidth = leftLinkBar + linkSpacing + rightLinkBar
valueOffset = (stringValueWidth - linkSpacing) // 2

# find optimal position for right side top node
# * must allow room for link bars above and between left and right top nodes
# * must not overlap lower level nodes on any given line (allow gap of minSpacing)
# * can be offset to the left if lower subNodes of right node
# have no overlap with subNodes of left node
minSpacing = 2
rightNodePosition = fn.reduce(lambda r,i: max(r,i[0] + minSpacing + firstRightIndent - i[1]), \
zip(leftLineWidths,rightLineIndents[0:commonLines]), \
firstLeftWidth + minLinkWidth)

# extend basic link bars (slashes) with underlines to reach left and right
# top nodes.
#
# vvvvv
# __/ \__
# L R
#
linkExtraWidth = max(0, rightNodePosition - firstLeftWidth - minLinkWidth )
rightLinkExtra = linkExtraWidth // 2
leftLinkExtra = linkExtraWidth - rightLinkExtra

# build value line taking into account left indent and link bar extension (on left side)
valueIndent = max(0, firstLeftWidth + leftLinkExtra + leftLinkBar - valueOffset)
valueLine = " " * max(0,valueIndent) + stringValue
slash = "\\" if inverted else "/"
backslash = "/" if inverted else "\\"
uLine = "¯" if inverted else "_"

# build left side of link line
leftLink = "" if not leftNode else ( " " * firstLeftWidth + uLine * leftLinkExtra + slash)

# build right side of link line (includes blank spaces under top node value)
rightLinkOffset = linkSpacing + valueOffset * (1 - leftLinkBar)
rightLink = "" if not rightNode else ( " " * rightLinkOffset + backslash + uLine * rightLinkExtra )

# full link line (will be empty if there are no sub nodes)
linkLine = leftLink + rightLink

# will need to offset left side lines if right side sub nodes extend beyond left margin
# can happen if left subtree is shorter (in height) than right side subtree
leftIndentWidth = max(0,firstRightIndent - rightNodePosition)
leftIndent = " " * leftIndentWidth
indentedLeftLines = [ (leftIndent if line else "") + line for line in leftSubLines ]

# compute distance between left and right sublines based on their value position
# can be negative if leading spaces need to be removed from right side
mergeOffsets = [ len(line) for line in indentedLeftLines ]
mergeOffsets = [ leftIndentWidth + rightNodePosition - firstRightIndent - w for w in mergeOffsets ]
mergeOffsets = [ p if rightSubLines[i] else 0 for i,p in enumerate(mergeOffsets) ]

# combine left and right lines using computed offsets
# * indented left sub lines
# * spaces between left and right lines
# * right sub line with extra leading blanks removed.
mergedSubLines = zip(range(len(mergeOffsets)), mergeOffsets, indentedLeftLines)
mergedSubLines = [ (i,p,line + (" " * max(0,p)) ) for i,p,line in mergedSubLines ]
mergedSubLines = [ line + rightSubLines[i][max(0,-p):] for i,p,line in mergedSubLines ]

# Assemble final result combining
# * node value string
# * link line (if any)
# * merged lines from left and right sub trees (if any)
treeLines = [leftIndent + valueLine] + ( [] if not linkLine else [leftIndent + linkLine] ) + mergedSubLines

# invert final result if requested
treeLines = reversed(treeLines) if inverted and isTop else treeLines

# return intermediate tree lines or print final result
if isTop : print("\n".join(treeLines))
else : return treeLines

这是它使用简单的 TreeNode 类生成的输出类型的示例。

class TreeNode:

def __init__(self,rootValue):
self.value = rootValue
self.left = None
self.right = None

def addValue(self,newValue):
if newValue == self.value: return self
if newValue < self.value:
if self.left : return self.left.addValue(newValue)
self.left = TreeNode(newValue)
return self.left
if self.right : return self.right.addValue(newValue)
self.right = TreeNode(newValue)
return self.right

def printTree(self):
printBTree(self,lambda n:(str(n.value),n.left,n.right))

root = TreeNode(80)

root.addValue(50)
root.addValue(90)
root.addValue(10)
root.addValue(60)
root.addValue(30)
root.addValue(70)
root.addValue(55)
root.addValue(5)
root.addValue(35)
root.addValue(85)

root.printTree()

这会产生以下输出:

#              80
# ___/ \___
# 50 90
# __/ \__ /
# 10 60 85
# / \ / \
# 5 30 55 70
# \
# 35

该函数足够通用,可以处理未存储在对象层次结构中的二叉树结构。这是一个如何使用它从包含堆树的列表中打印的示例:

def printHeapTree(tree, inverted=False):

def getNode(index):
left = index * 2 + 1
right = index * 2 + 2
left = left if left < len(tree) and tree[left] else None
right = right if right < len(tree) and tree[right] else None
return (str(tree[index]), left, right)

printBTree(0,getNode,inverted)


formula = ["+","4","*",None,None,"2","75"]
printHeapTree(formula)

# +
# / \
# 4 *
# / \
# 2 75

该函数将自动调整更宽标签的缩进:

family = [ "Me","Paul","Rosa","Vincent","Jody","John","Kate"]
printHeapTree(family)

# Me
# ___/ \___
# Paul Rosa
# / \ / \
# Vincent Jody John Kate

它也可以倒着打印树(适合家谱):

printHeapTree(family,inverted=True)

# Vincent Jody John Kate
# \ / \ /
# Paul Rosa
# ¯¯¯\ /¯¯¯
# Me

关于python - 如何在 Python 中将二叉树打印为节点结构,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48850446/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com