- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经构建了一个神经网络,它在大约 300,000 行、2 个分类变量和 1 个自变量的小型数据集上运行良好,但当我将其增加到 650 万行时遇到内存错误。所以我决定修改代码并越来越接近,但现在我遇到了拟合错误的问题。我有 2 个分类变量和一列用于 1 和 0 的因变量(可疑或不可疑。开始数据集看起来像这样:
DBF2
ParentProcess ChildProcess Suspicious
0 C:\Program Files (x86)\Wireless AutoSwitch\wrl... ... 0
1 C:\Program Files (x86)\Wireless AutoSwitch\wrl... ... 0
2 C:\Windows\System32\svchost.exe ... 1
3 C:\Program Files (x86)\Wireless AutoSwitch\wrl... ... 0
4 C:\Program Files (x86)\Wireless AutoSwitch\wrl... ... 0
5 C:\Program Files (x86)\Wireless AutoSwitch\wrl... ... 0
我的代码遵循/有错误:
import pandas as pd
import numpy as np
import hashlib
import matplotlib.pyplot as plt
import timeit
X = DBF2.iloc[:, 0:2].values
y = DBF2.iloc[:, 2].values#.ravel()
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 0] = labelencoder_X_1.fit_transform(X[:, 0])
labelencoder_X_2 = LabelEncoder()
X[:, 1] = labelencoder_X_2.fit_transform(X[:, 1])
onehotencoder = OneHotEncoder(categorical_features = [0,1])
X = onehotencoder.fit_transform(X)
index_to_drop = [0, 2039]
to_keep = list(set(xrange(X.shape[1]))-set(index_to_drop))
X = X[:,to_keep]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
#ERROR
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/sklearn/base.py", line 517, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "/usr/local/lib/python2.7/dist-packages/sklearn/preprocessing/data.py", line 590, in fit
return self.partial_fit(X, y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/preprocessing/data.py", line 621, in partial_fit
"Cannot center sparse matrices: pass `with_mean=False` "
ValueError: Cannot center sparse matrices: pass `with_mean=False` instead. See docstring for motivation and alternatives.
X_test = sc.transform(X_test)
#ERROR
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/sklearn/preprocessing/data.py", line 677, in transform
check_is_fitted(self, 'scale_')
File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.py", line 768, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.exceptions.NotFittedError: This StandardScaler instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.
如果这对我打印 X_train 和 y_train 有帮助:
X_train
<5621203x7043 sparse matrix of type '<type 'numpy.float64'>'
with 11242334 stored elements in Compressed Sparse Row format>
y_train
array([0, 0, 0, ..., 0, 0, 0])
最佳答案
X_train
是一个稀疏矩阵,当您像您的案例一样使用大型数据集时,它非常有用。问题是作为 documentation解释:
with_mean : boolean, True by default
If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory.
你可以尝试传递 with_mean=False
:
sc = StandardScaler(with_mean=False)
X_train = sc.fit_transform(X_train)
以下行失败,因为 sc 仍然是未触及的 StandardScaler
对象。
X_test = sc.transform(X_test)
要能够使用转换方法,您首先必须使 StandardScaler
适合数据集。如果您的目的是将 StandardScaler
安装在您的训练集上,并使用它将训练集和测试集转换到同一空间,那么您可以按如下方式进行:
sc = StandardScaler(with_mean=False)
X_train_sc = sc.fit(X_train)
X_train = X_train_sc.transform(X_train)
X_test = X_train_sc.transform(X_test)
关于Python - 遇到 x_test y_test 拟合错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52008548/
我已经构建了一个神经网络,它在大约 300,000 行、2 个分类变量和 1 个自变量的小型数据集上运行良好,但当我将其增加到 650 万行时遇到内存错误。所以我决定修改代码并越来越接近,但现在我遇到
Y_预测= [ 1.22770607 -0.04569864 2.23941551 1.35143415 1.28991445 0.01398049 1.05511961 1.84491
对于某些问题,验证数据不能是生成器,例如:TensorBoard histograms : If printing histograms, validation_data must be provid
我有一个 pandas 数据框,用于二元分类案例(类别 A 和类别 B)。为了获得 X_train、X_test、y_train、y_test,我按 70:30 拆分,如下所示: from sklea
我有一个如下结构的数据集: Dataset/ | | -----Pothole/ | | | ------ umm001.jpg |
我有一个如下结构的数据集: Dataset/ | | -----Pothole/ | | | ------ umm001.jpg |
我在使用 keras sequential().predict(x_test) 时遇到问题。 顺便说一句,使用 sequential().predict_proba(x_test) 获得相同的输出,因
我看过一些教程,以深入了解 Keras,以使用卷积神经网络进行深度学习。在教程(以及 Keras 的官方文档)中,MNIST 数据集是这样加载的: from keras.datasets import
世界各地的程序员们大家好。我在将数据输入机器学习模型时遇到问题。 我尝试使用 pandas 将 CSV 文件读入 python,然后将其拆分为训练数据和测试数据。之后,我使用 StandardScal
如果我有一个数据集 dataset = tf.keras.preprocessing.image_dataset_from_directory( directory, labels="
所以我想在拆分它们(使用分层)后对训练和测试数据集执行平均目标编码,并且为了这样做,必须将它们重新合并在一起。 我该怎么做? ,任何建议将不胜感激? , 谢谢你。 X_train, X_test
我是一名优秀的程序员,十分优秀!