- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
= 1 和 !is.na-6ren">
在下面的代码中,我尝试在 mtcars
的右端创建一个列表 tibble 列,其中:列表的每个成员都是一个包含多行 mtcars tibble 的 tibble,其中 vs >= 1
和 !is.na(gear)
。
在 purrr::map2()
中,我使用 !!dplyr::sym()
将输入字符串转换为用于 的 tibble 变量dplyr::filter()
和 tidyr::drop_na()
,但这会导致错误
"object '.x' not found".
为什么会这样?
我知道如果我使用 dplyr::filter_at(.x, ~ {.x >= 1})
和 tidyr::drop_na(all_of(.y))
,我可以避免这个错误。但是如果我想将参数 .x
和 .y
从字符串转换为 tibble 变量并在 filter()
中使用它们有什么问题吗和 drop_na()
? (我记得他们接受不带引号的 tibble 变量)
感谢您的帮助和建议。
library(tidyverse)
mtcars %>%
tibble::as_tibble() %>%
dplyr::mutate(vs2 = purrr::map2("vs", "gear", ~ {
mtcars %>%
tibble::as_tibble() %>%
dplyr::filter(!!dplyr::sym(.x) >= 1) %>%
tidyr::drop_na(!!dplyr::sym(.y))
}))
#> Error in is_symbol(x): object '.x' not found
由 reprex package 创建于 2020-06-10 (v0.3.0)
我的 session 信息:
sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.5.0 stringr_1.4.0 dplyr_0.8.3 purrr_0.3.3 readr_1.3.1
[6] tidyr_1.0.2 tibble_2.1.3 ggplot2_3.2.1 tidyverse_1.3.0 shiny_1.4.0.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.3 lubridate_1.7.4 lattice_0.20-38 ps_1.3.2 assertthat_0.2.1
[6] digest_0.6.23 mime_0.8 R6_2.4.1 cellranger_1.1.0 backports_1.1.5
[11] reprex_0.3.0 evaluate_0.14 httr_1.4.1 pillar_1.4.3 rlang_0.4.6
[16] lazyeval_0.2.2 readxl_1.3.1 rstudioapi_0.10 miniUI_0.1.1.1 whisker_0.4
[21] callr_3.4.2 rmarkdown_2.1 munsell_0.5.0 broom_0.5.5 compiler_3.6.0
[26] httpuv_1.5.3.1 modelr_0.1.6 xfun_0.11 pkgconfig_2.0.3 clipr_0.7.0
[31] htmltools_0.4.0 tidyselect_1.0.0 fansi_0.4.0 crayon_1.3.4 dbplyr_1.4.2
[36] withr_2.1.2 later_1.0.0 grid_3.6.0 nlme_3.1-139 jsonlite_1.6
[41] xtable_1.8-4 gtable_0.3.0 lifecycle_0.1.0 DBI_1.1.0 magrittr_1.5
[46] scales_1.1.0 cli_2.0.0 stringi_1.4.3 fs_1.3.1 promises_1.1.0
[51] xml2_1.2.2 vctrs_0.2.4 generics_0.0.2 tools_3.6.0 glue_1.3.1
[56] hms_0.5.2 processx_3.4.2 fastmap_1.0.1 colorspace_1.4-1 rvest_0.3.5
[61] knitr_1.26 haven_2.2.0
最佳答案
不可能使用 !!嵌套在
(它仅在 mutate
中的 map
调用中的 rlang::symmutate
的顶层有效。您可以编写自定义函数,在其中使用 !! rlang::sym()
并在 map2
中调用它。或者您可以使用 eval
而不是!!
。
下面是一个使用自定义函数的选项。但是,我不确定您想要的输出结果如何。此外,在 map
调用中使用长度为 1 的字符串没有多大意义,因为我们可以在没有 map
的情况下产生相同的结果。
library(tidyverse)
filter_df <- function(x, y) {
mtcars %>%
tibble::as_tibble() %>%
dplyr::filter(!! rlang::sym(x) >= 1,
!is.na(!! rlang::sym(y)))
}
mtcars %>%
tibble::as_tibble() %>%
mutate(vs2 = map2("vs", "gear", filter_df))
#> # A tibble: 32 x 12
#> mpg cyl disp hp drat wt qsec vs am gear carb vs2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 <tibble [1~
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 <tibble [1~
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 <tibble [1~
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 <tibble [1~
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 <tibble [1~
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 <tibble [1~
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 <tibble [1~
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 <tibble [1~
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 <tibble [1~
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 <tibble [1~
#> # ... with 22 more rows
由 reprex package 创建于 2020-06-10 (v0.3.0)
请注意,您可以通过调用包含在 list
中的 mutate
中的自定义函数来产生相同的结果(对于此功能,您可能需要 dplyr 1.0.0):
mtcars %>%
tibble::as_tibble() %>%
mutate(vs2 = list(filter_df("vs", "gear")))
这将是使用 eval
和 map2
的替代方法:
library(tidyverse)
mtcars %>%
tibble::as_tibble() %>%
mutate(vs2 = map2("vs", "gear",
~ mtcars %>%
tibble::as_tibble() %>%
dplyr::filter(eval(rlang::sym(.x)) >= 1,
!is.na(eval(rlang::sym(.y))))
)
)
#> # A tibble: 32 x 12
#> mpg cyl disp hp drat wt qsec vs am gear carb vs2
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 <tibble [1~
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 <tibble [1~
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 <tibble [1~
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 <tibble [1~
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 <tibble [1~
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 <tibble [1~
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 <tibble [1~
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 <tibble [1~
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 <tibble [1~
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 <tibble [1~
#> # ... with 22 more rows
由 reprex package 创建于 2020-06-10 (v0.3.0)
添加
由于 OP 显示了一个非常小的例子,这里是一个更现实的方法,其中 tibble
包含一个带有变量名称的字符列。在这种情况下,dplyr >= 1.0.0
不再需要 map
,因为我们可以使用 rowwise
和 mutate
。
library(tidyverse)
filter_df <- function(df, x) {
df %>%
tibble::as_tibble() %>%
dplyr::filter(!! rlang::sym(x) >= mean(!! rlang::sym(x)))
}
tibble(data = list(tibble(mtcars)),
var_names = names(mtcars)) %>%
rowwise() %>%
mutate(new_data = list(filter_df(data, var_names)))
#> # A tibble: 11 x 3
#> # Rowwise:
#> data var_names new_data
#> <list> <chr> <list>
#> 1 <tibble [32 × 11]> mpg <tibble [14 × 11]>
#> 2 <tibble [32 × 11]> cyl <tibble [14 × 11]>
#> 3 <tibble [32 × 11]> disp <tibble [15 × 11]>
#> 4 <tibble [32 × 11]> hp <tibble [15 × 11]>
#> 5 <tibble [32 × 11]> drat <tibble [18 × 11]>
#> 6 <tibble [32 × 11]> wt <tibble [16 × 11]>
#> 7 <tibble [32 × 11]> qsec <tibble [15 × 11]>
#> 8 <tibble [32 × 11]> vs <tibble [14 × 11]>
#> 9 <tibble [32 × 11]> am <tibble [13 × 11]>
#> 10 <tibble [32 × 11]> gear <tibble [17 × 11]>
#> 11 <tibble [32 × 11]> carb <tibble [15 × 11]>
由 reprex package 创建于 2020-06-10 (v0.3.0)
关于r - 在创建列表 tibble 列时在 "mutation"中使用 dplyr::sym() 会导致错误 is_symbol(x): object '.x' not found,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62299602/
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有以下数据框: library(dplyr) df % rename_all(funs(stringr::str_replace_all(., "gh", "v"))) 我想结合使用 renam
我有一个数据( df_1 ): df_1 % select_at(.vars = 'var_1') var_1 1 99.47262 10 25.91552 没关系。但: df_1
我正在尝试安装dplyr软件包,但收到一条错误消息,提示“库(dplyr)中存在错误:没有名为dplyr的软件包”。我正在使用窗口系统和Ri386 3.5.2。我尝试按照其他人的建议使用代码insta
假设我想以并行方式申请 myfunction到 myDataFrame 的每一行.假设 otherDataFrame是一个包含两列的数据框:COLUNM1_odf和 COLUMN2_odf出于某些原因
我目前正在构建一个包,我想知道是否有办法调用 %>%来自 dplyr 的操作符,而无需实际附加 dplyr 包。例如,对于从包中导出的任何函数,您可以使用双冒号 ( :: ) 调用它。所以如果我想使用
library(dplyr) mtcars %>% group_by(vs) %>% do(tt=t.test(mpg~am, data=.)) %>% mutate(t=tt$statist
我正在尝试为一组标准曲线构建一系列线性模型。 目前这段代码正在产生我想要的输出(每个线性模型的截距和斜率): slopes % group_by(plate, col, row, conc_ug_mL
我正在寻找替换我的一些使用 dplyr::do 的 R 代码,因为这个函数很快就会被弃用。我的很多工作都需要创建分层 CDF 图。使用 dply:do 时,我分层的变量作为变量传递给结果数据框,然后我
问题 我正在尝试使用 dplyr::mutate()和 dplyr::case_when()在数据框中创建新的数据列,该列使用存储在另一个对象(“查找列表”)中的数据填充,并基于数据框中列中的信息。
最近我发现了很棒的 dplyr.spark.hive启用 dplyr 的软件包前端操作 spark或 hive后端。 在包的 README 中有关于如何安装此包的信息: options(repos =
我正在尝试在 dplyr 链中使用 data.frame 两次。这是一个给出错误的简单示例 df % group_by(Type) %>% summarize(X=n()) %>% mu
当我浏览答案时 here , 我找到了 this solution与 data.frame 完全符合预期. library(dplyr) # dplyr_0.4.3 library(data.tab
我的数据来自一个数据库,根据我运行 SQL 查询的时间,该数据库可能包含一周到另一周不同的 POS 值。 不知道哪些值将在变量中使得自动创建报告变得非常困难。 我的数据如下所示: sample % p
我想定义与“扫帚”包中类似的功能 library(dplyr) library(broom) mtcars %>% group_by(am) %>% do(model = lm(mpg ~ w
set.seed(123) df % group_by(id) %>% mutate(roll.sum = c(x[1:4], zoo::rollapply(x, 5, sum))) # Groups
先来个样本数据 set.seed(123) dat 1 -4 2 6 3 -2 4
我有一个带列的数据框 x1, x2, group我想生成一个带有额外列的新数据框 rank表示x1的顺序在其组中。 有相关问题here ,但已接受的答案似乎不再有效。 到这里为止,很好: librar
我有一个示例 df,如下所示: d% group_by(CaseNo) %>% arrange(desc(Submissiondate)) %>% dplyr::mutate(rank = row_n
我有一个数据框,其中包含一些数据输入错误。 我希望将每组的这些异常值替换为每组最常见的值。 我的数据如下: df % group_by(CODE) %>% mutate(across(c(DOSAGE
我是一名优秀的程序员,十分优秀!