gpt4 book ai didi

MATLAB::均方误差与 SNR 图

转载 作者:行者123 更新时间:2023-12-05 07:57:35 27 4
gpt4 key购买 nike

我很难理解生成 SNR (db) 与 MSE 图背后的逻辑。不同的信噪比 (SNR) 是通过改变噪声功率产生的。 MSE 的公式是 T 独立运行的平均值。

对于每个 SNR,我生成 NEval = 10 时间序列。当 SNR 在范围 = [0:5:50] 时,如何正确绘制 SNR 与 MSE 的关系图?下面是伪代码。

 N = 100; %Number_data_points
NEval = 10; %Number_of_different_Signals
Snr = [0:5:50];
T = 1000; %Number of independent runs

MSE = [1];
for I = 1:T
for snr = 1: length(Snr)
for expt = 1:NEval
%generate signal
w0=0.001; phi=rand(1);
signal = sin(2*pi*[1:N]*w0+phi);
% add zero mean Gaussian noise
noisy_signal = awgn(signal,Snr(snr),'measured');
% Call Estimation algorithm
%Calculate error
end
end
end

plot(Snr,MSE); %Where and how do I calculate this MSE

最佳答案

如此处 (http://www.mathworks.nl/help/vision/ref/psnr.html) 或其他类似来源所述,MSE 只是原始信号和损坏信号之间的均方误差。在你的符号中,

w0=0.001;
signal = sin(2*pi*[1:N]*w0);
MSE = zeros(T*Neval,length(Snr));
for snr = 1:length(Snr)
for I = 1:T*Neval %%note, T and Neval play the same role in your pseudo code
noisy_signal = awgn(sin(2*pi*[1:N]*w0+rand(1)),Snr(snr),'measured');
MSE(I,snr) = mean((noisy_signal - signal).^2);
end
end
semilogy(Snr, mean(MSE)) %%to express MSE in the log (dB-like) units

对于不同长度信号的情况:

w0=0.001;
Npoints = [250,500,1000];
MSE = zeros(T,length(Npoints),length(Snr));
for snr = 1:length(Snr)
for ip = 1:length(Npoints)
signal = sin(2*pi*[1:Npoints(ip)]*w0);
for I = 1:T
noisy_signal = awgn(sin(2*pi*[1:Npoints(ip)]*w0+rand(1)),Snr(snr),'measured');
MSE(I,ip,snr) = mean((noisy_signal - signal).^2);
end
end
end
semilogy(Snr, squeeze(mean(mean(MSE,1),2)) )

关于MATLAB::均方误差与 SNR 图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26618318/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com