- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在处理每日时间序列,我需要根据我的历史记录构建 90 天(或更多)的预测 - 当前时间序列大约有 298 个数据点。
我遇到的问题是最终预测中著名的平线 - 是的,我可能没有季节性,但我正在努力解决这个问题。另一个问题是如何找到最佳模型并从现在开始针对这种行为进行调整。
我创建了一个测试用例来进一步调查此问题,我们将不胜感激。
谢谢,
开始
x <- day_data # My time serie
z <- 90 # Days to forecast
low_bound_date <- as.POSIXlt(min(x$time), format = "%m/%d/%Y") # oldest date in the DF.
> low_bound_date
[1] "2015-12-21 PST"
low_bound_date$yday
> low_bound_date$yday # Day in Julian
[1] 354
lbyear <- as.numeric(substr(low_bound_date, 1, 4))
> lbyear
[1] 2015
这是我的时间系列内容
> ts
Time Series:
Start = c(2065, 4)
End = c(2107, 7)
Frequency = 7
[2] 20.73 26.19 27.51 26.11 26.28 27.58 26.84 27.00 26.30 28.75 28.43 39.03 41.36 45.42 44.80 45.33 47.79 44.70 45.17
[20] 34.90 32.54 32.75 33.35 34.76 34.11 33.59 33.60 38.08 30.45 29.66 31.09 31.36 31.96 29.30 30.04 30.85 31.13 25.09
[39] 17.88 23.73 25.31 31.30 35.18 34.13 34.96 35.12 27.36 38.33 38.59 38.14 38.54 41.72 37.15 35.92 37.37 32.39 30.64
[58] 30.57 30.66 31.16 31.50 30.68 32.21 32.27 32.55 33.61 34.80 33.53 33.09 20.90 6.91 7.82 15.78 7.25 6.19 6.38
[77] 38.06 39.82 35.53 38.63 41.91 39.76 37.26 38.79 37.74 35.61 39.70 35.79 35.36 29.63 22.07 35.39 35.99 37.35 38.82
[96] 25.80 21.31 18.85 9.52 20.75 36.83 44.12 37.79 34.45 36.05 16.39 21.84 31.39 34.26 31.50 30.87 28.88 42.83 41.52
[115] 42.34 47.35 44.47 44.10 44.49 26.89 18.17 40.44 43.93 41.56 39.98 40.31 40.59 40.17 40.22 40.50 32.68 35.89 36.06
[134] 34.30 22.67 12.56 13.29 12.34 28.00 35.27 36.57 33.78 32.15 33.58 34.62 30.96 32.06 33.05 30.66 32.47 30.42 32.83
[153] 31.74 29.39 22.39 12.58 16.46 5.36 4.01 15.32 32.79 31.66 32.02 27.60 31.47 31.61 34.96 27.77 31.91 33.94 33.43
[172] 26.94 28.38 21.42 24.51 23.82 31.71 26.64 27.96 29.29 29.25 28.70 27.02 27.62 30.90 27.46 27.37 26.46 27.77 13.61
[191] 5.87 12.18 5.68 4.15 4.35 4.42 16.42 25.18 26.06 27.39 27.57 28.86 15.18 5.19 5.61 8.28 7.78 5.13 4.90
[210] 5.02 5.27 16.31 25.01 26.19 25.96 24.93 25.53 25.56 26.39 26.80 26.73 26.00 25.61 25.90 25.89 13.80 6.66 6.41
[229] 5.28 5.64 5.71 5.38 5.76 7.20 7.27 5.55 5.31 5.94 5.75 5.93 5.77 6.57 5.52 5.51 5.47 5.69 19.75
[248] 29.22 30.75 29.63 30.49 29.48 31.83 30.42 29.27 30.40 29.91 32.00 30.09 28.93 14.54 7.75 5.63 17.17 22.27 24.93
[267] 35.94 37.42 33.13 25.88 24.27 37.64 37.42 38.33 35.20 21.32 7.32 4.81 5.17 17.49 23.77 23.36 27.60 26.53 24.99
[286] 24.22 23.76 24.10 24.22 27.06 25.53 23.40 37.07 26.52 25.19 28.02 28.53 26.67
第一步,我在 ts
中获取我的数据
day_data_ts <- ts(x$avg_day, start = c(lbyear,low_bound_date$yday), frequency=7)
plot(day_data_ts)
acf(day_data_ts)
第二步,我在 msts
中获取我的数据
day_data_msts <- msts(x$avg_day, seasonal.periods=c(7,365.25), start = c(lbyear,low_bound_date$yday))
plot(day_data_msts)
acf(day_data_msts)
我进行了几次拟合迭代,试图找出最佳拟合和预测模型。
第一个拟合测试仅使用 ts
。
fit1 <- HoltWinters(day_data_ts)
> fit1
Holt-Winters exponential smoothing with trend and additive seasonal component.
Call: HoltWinters(x = day_data_ts)
Smoothing parameters: alpha: 1 beta : 0.006757112 gamma: 0
Coefficients:
[,1]
a 28.0922449
b 0.1652477
s1 0.6241837
s2 1.9084694
s3 0.9913265
s4 0.8198980
s5 -1.7015306
s6 -1.2201020
s7 -1.4222449
fit2 <- tbats(day_data_ts)
> fit2
BATS(1, {0,0}, 0.8, -)
Parameters: Alpha: 1.309966 Beta: -0.3011143 Damping Parameter: 0.800001
Seed States:
[,1]
[1,] 15.282259
[2,] 2.177787
Sigma: 5.501356 AIC: 2723.911
fit3 <- ets(day_data_ts)
> fit3
ETS(A,N,N)
Smoothing parameters: alpha = 0.9999
Initial states: l = 25.2275
sigma: 5.8506
AIC AICc BIC
2756.597 2756.678 2767.688
fit4 <- auto.arima(day_data_ts)
> fit4
ARIMA(1,1,2)
Coefficients:
ar1 ma1 ma2
0.7396 -0.6897 -0.2769
s.e. 0.0545 0.0690 0.0621
sigma^2 estimated as 30.47: log likelihood=-927.9
AIC=1863.81 AICc=1863.94 BIC=1878.58
第二个测试使用 msts
。我还将 ets
模型更改为 MAM
。
fit5 <- tbats(day_data_msts)
> fit5
BATS(1, {0,0}, 0.8, -)
Parameters: Alpha: 1.309966 Beta: -0.3011143 Damping Parameter: 0.800001
Seed States:
[,1]
[1,] 15.282259
[2,] 2.177787
Sigma: 5.501356 AIC: 2723.911
fit6 <- ets(day_data_msts, model="MAN")
> fit6
ETS(M,A,N)
Smoothing parameters: alpha = 0.9999 beta = 9e-04
Initial states: l = 52.8658 b = 3.9184
sigma: 0.3459
AIC AICc BIC
3042.744 3042.949 3061.229
fit7 <- auto.arima(day_data_msts)
> fit7
ARIMA(1,1,2)
Coefficients:
ar1 ma1 ma2
0.7396 -0.6897 -0.2769
s.e. 0.0545 0.0690 0.0621
sigma^2 estimated as 30.47: log likelihood=-927.9
AIC=1863.81 AICc=1863.94 BIC=1878.58
最佳答案
您可以按如下方式对先前估计的模型进行预测(使用内置时间序列 LakeHuron
):
library(forecast)
y <- LakeHuron
tsdisplay(y)
# estimate ARMA(1,1)
mod_2 <- Arima(y, order = c(1, 0, 1))
#make forecast for 5 periods (years in this case)
fHuron <- forecast(mod_2, h = 5)
#show results in table
fHuron
#plot results
plot(fHuron)
这会给你: 请注意,ARIMA 模型的预测基于先前的值,因此如果我们对多个周期进行预测,该模型将使用已经预测的值来预测下一个。这会降低准确性。
要拟合最佳 ARIMA 模型,请使用此函数:
library(R.utils) #for the function 'withTimeout'
fitARIMA<-function(timeseriesObject, timout)
{
final.aic <- Inf
final.order <- c(0,0,0)
for (p in 0:5) for (q in 0:5) {
if ( p == 0 && q == 0) {
next
}
arimaFit = tryCatch(
withTimeout(arima(timeseriesObject
,order=c(p, 0, q))
,timeout = timeout)
,error=function( err ) FALSE
,warning=function( err ) FALSE )
if( !is.logical( arimaFit ) ) {
current.aic <- AIC(arimaFit)
if (current.aic < final.aic) {
final.aic <- current.aic
final.order <- c(p, 0, q)
final.arima <- arima(timeseriesObject, order=final.order)
}
} else {
next
}
}
final.order<-c(final.order,final.aic)
final.order
}
关于R拟合和预测每日时间序列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40387365/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!