- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Tensorflow 是只使用专用 GPU 内存还是也可以使用共享内存?
我还运行了这个:
从 tensorflow.python.client 导入 device_lib
device_lib.list_local_devices()
[name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456
name: "/device:GPU:0" device_type: "GPU" memory_limit: 112128819
这些“内存限制”268,435,456 和 112,128,819 是什么?
这就是我所说的 - 当我在 Win10 上运行 TF 时,共享内存始终为零,但如果我的批处理大小太大,我会得到 ResourceExhaustedError。似乎从未使用过共享内存。
最佳答案
根据我的经验,Tensorflow 仅使用如下所述的专用 GPU 内存。当时memory_limit = max dedicated memory - 当前dedicated memory usage(在Win10任务管理器中观察)
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
输出:
physical_device_desc: "device: XLA_CPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 2196032718
为了验证这一点,我尝试将其用于单个任务(来自 https://github.com/aime-team/tf2-benchmarks 的 Tensorflow 2 基准测试),它在带有 Tensorflow 2.3.0 的 GTX1060 3GB 上给出如下“资源耗尽”错误。
2021-01-20 01:50:53.738987: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 3GB computeCapability: 6.1
coreClock: 1.7085GHz coreCount: 9 deviceMemorySize: 3.00GiB deviceMemoryBandwidth: 178.99GiB/s
Limit: 2196032718
InUse: 1997814016
MaxInUse: 2155556352
NumAllocs: 1943
MaxAllocSize: 551863552
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0
2021-01-20 01:51:21.393175: W tensorflow/core/framework/op_kernel.cc:1767] OP_REQUIRES failed at conv_ops.cc:539 : Resource exhausted: OOM when allocating tensor with shape[64,256,56,56] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Traceback (most recent call last):
我曾尝试对多个小任务执行相同的操作。它尝试将共享 GPU 内存用于具有不同 Juypter 内核的多个任务,但较新的任务最终失败了。
以两个相似的 Xception 模型为例:
任务 1:运行没有错误
任务 2:失败并出现以下错误
UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.
[[node xception/block1_conv1/Conv2D (defined at <ipython-input-25-0c5fe80db9f1>:3) ]] [Op:__inference_predict_function_5303]
Function call stack:
predict_function
失败时的 GPU 内存使用情况(注意任务 2 开始时共享内存的使用情况)
关于python - Tensorflow - GPU 专用与共享内存,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48492079/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!