- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
下面的代码比较了 CPU 和 GPU 上的计算时间。只有第一次执行时,我在 GPU 上的运行时间比 CPU 慢,而在所有后续运行中,GPU 的速度要快得多。为什么第一次在 GPU 上运行很慢?如何让 GPU 上的第一次运行速度更快?
from __future__ import absolute_import, division, print_function
import tensorflow as tf
tf.enable_eager_execution()
import time
def time_matmul(x):
start = time.time()
for loop in range(10):
tf.matmul(x, x)
result = time.time()-start
print("10 loops: {:0.2f}ms".format(1000*result))
print("On GPU:")
# Force execution on GPU #0 if available
if tf.test.is_gpu_available():
with tf.device("GPU:0"): # Or GPU:1 for the 2nd GPU, GPU:2 for the 3rd etc.
x = tf.random_uniform([1000, 1000])
assert x.device.endswith("GPU:0")
time_matmul(x)
# Force execution on CPU
print("On CPU:")
with tf.device("CPU:0"):
x = tf.random_uniform([1000, 1000])
assert x.device.endswith("CPU:0")
time_matmul(x)
第一次运行的输出:
On GPU:
10 loops: 443.04ms
On CPU:
10 loops: 100.01ms
后续运行的输出:
On GPU:
10 loops: 1.00ms
On CPU:
10 loops: 103.01ms
PS:这和貌似related question不一样因为 tf.device("GPU:0")
已经选择了 /device:GPU:0
而不是 /device:XLA_GPU:0
最佳答案
出于好奇,我在 3 年后尝试了 OP 脚本。同样的情况发生在最新版本的 TF、CUDA(还是一张旧的 GTX1050 卡)上。一个可能的解释是数据移动。
在第一次运行时——无论是 GPU 还是 CPU——数据四处移动,为行动做好准备。众所周知,数据移动会显着降低速度。 CPU 内存在物理上比 GPU 内存“更近”,后者通常位于外部板上。默认计算是 CPU 及其内存,因此一个程序几乎可以为 CPU 运行做好准备——几乎不需要移动,并且基本上停留在同一个芯片上。 GPU 内存在物理上是一个不同的芯片,“距离很远”,因此移动到那里可能需要更多时间。
可以通过遍历 OP 脚本来支持这种想法(为了匹配 TF2.9.1 而稍作更改):
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
import time
def time_matmul(run, x):
start = time.time()
for loop in range(10):
tf.matmul(x, x)
result = time.time()-start
print(f"Run #{run}: {1000*result:0.2f}ms")
print("On GPU:")
# Force execution on GPU #0 if available
if tf.test.is_gpu_available():
with tf.device("GPU:0"): # Or GPU:1 for the 2nd GPU, GPU:2 for the 3rd etc.
x = tf.random.uniform([1000, 1000])
assert x.device.endswith("GPU:0")
for run in range(10):
time_matmul(run, x)
# Force execution on CPU
print("On CPU:")
with tf.device("CPU:0"):
x = tf.random.uniform([1000, 1000])
assert x.device.endswith("CPU:0")
for run in range(10):
time_matmul(run, x)
结果是:
Run #0: 273.66ms
Run #1: 0.37ms
Run #2: 0.36ms
Run #3: 0.36ms
Run #4: 0.37ms
Run #5: 0.36ms
Run #6: 0.35ms
Run #7: 0.41ms
Run #8: 0.37ms
Run #9: 0.35ms
On CPU:
Run #0: 56.89ms
Run #1: 44.31ms
Run #2: 47.60ms
Run #3: 46.97ms
Run #4: 46.40ms
Run #5: 44.84ms
Run #6: 43.88ms
Run #7: 45.28ms
Run #8: 43.46ms
Run #9: 43.57ms
目测会发生什么(正确的统计方法会运行那么多次,完成但没有更多的洞察力)第一次运行很慢,但后来更快,更重要的是稳定。稳定性是我们首先期望的(运行相同应该表现相同),但第一次运行需要通过将数据放在内存中“正确”的位置来设置。
我不知道有 API 可以手动放置数据,然后开始运行。但这将是一种“错觉”。这里的 Run #0 包括移动和计算。将两者分开可能会使运行 #0 与所有其他运行一样快,但我们仍然必须事先移动数据——所需时间不会显示在结果表中...
请注意,这种内存移动是一个可能的原因(此处归因推理),并且可能还有其他事情发生。脚本结果支持这种想法,但它只是允许得出内存移动是可能原因的结论。这个帖子证明不了什么。正确分析以获得根本原因需要更多时间使用探查器(而 Python 探查器可能还不够)。
撇开这个免责声明不谈,它看起来确实像是我们在这里观察到的内存移动成本。
关于python - Tensorflow Eager 模式 : First execution on GPU slow,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57581261/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!