gpt4 book ai didi

python - 如何将 GridSearchCV 用于带有 SVC 估计器的 OneVsRestClassifier?

转载 作者:行者123 更新时间:2023-12-05 07:17:36 24 4
gpt4 key购买 nike

我正在尝试将 OneVsRestClassifier 与 SVC 一起用于图像的多分类问题 - 我从 CellProfiler 获得了图像的数值特征。我想使用 GridSearchCV 查找要使用的超参数,但我被卡住了。

有人对此有解决方案/建议吗?

我已通过 Google 阅读,但似乎无法解决我的问题。

    grid = GridSearchCV(pipe, scoring='f1',
param_grid=param_grid, cv=5,
return_train_score=True,
iid=False,
n_jobs=-1
)
grid.fit(X_train, np.ravel(y_train))
return grid
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import classification_report

pipe = make_pipeline(StandardScaler(),
OneVsRestClassifier(SVC(probability=True)))

param_grid = {
'estimator__C': [0.001, 0.01, 0.1, 1, 10, 100],
'estimator__kernel': ['linear', 'rbf', 'poly'],
'estimator__degree': [2, 3, 4, 5, 7, 10],
'estimator__gamma': [0.01, 0.02, 0.03, 0.04, 0.05, 1]
}

clf = grid_search_fit(pipe, param_grid)

preds = clf.predict(X_test)
print(classification_report(y_test, preds, target_names = ['empty', 'good', 'blurred']))
ValueError: Invalid parameter estimator for estimator Pipeline(memory=None,
steps=[('standardscaler',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('onevsrestclassifier',
OneVsRestClassifier(estimator=SVC(C=1.0, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape='ovr',
degree=3,
gamma='auto_deprecated',
kernel='rbf', max_iter=-1,
probability=True,
random_state=None,
shrinking=True, tol=0.001,
verbose=False),
n_jobs=None))],
verbose=False). Check the list of available parameters with `estimator.get_params().keys()`.

最佳答案

我对你的代码做了如下修改:

  1. 删除了选项 iid=False
  2. 我稍微改变了你的 Pipeline 和 GridSearchCV 的形状

更改后的代码如下。您可以或多或少地像这样构建 Pipeline 和 Gridsearch。

from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import classification_report

pipe = Pipeline([
("scale", StandardScaler()),
('classify', OneVsRestClassifier(SVC(probability=True)))
])

param_grid = {
'classify__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100],
'classify__estimator__kernel': ['linear', 'rbf', 'poly'],
'classify__estimator__degree': [2, 3, 4, 5, 7, 10],
'classify__estimator__gamma': [0.01, 0.02, 0.03, 0.04, 0.05, 1]
}

grid_search = GridSearchCV(
pipe, param_grid, cv=5, scoring='f1', verbose=1, return_train_score=True, n_jobs=-1)

grid_search = grid_search.fit(X_train, np.ravel(y_train))

preds = clf.predict(X_test)
print(classification_report(y_test, preds, target_names = ['empty', 'good', 'blurred']))

关于python - 如何将 GridSearchCV 用于带有 SVC 估计器的 OneVsRestClassifier?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58723803/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com