- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试获取 tensorflow 模型的内存使用情况,从卡住的 pb 文件加载模型:
import tensorflow as tf
def load_graph_def(model_filepath):
# Expects frozen graph in .pb format
with tf.gfile.GFile(model_filepath, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
def load_graph(graph_def):
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")
return graph
def print_memory_usage(sess):
def convert_units(size_bytes):
import math
if size_bytes == 0:
return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return "%s %s" % (s, size_name[i])
from tensorflow.contrib.memory_stats import MaxBytesInUse
print("Max memory usage: ", convert_units(sess.run(MaxBytesInUse())))
model_filepath = './inception_v3_2016_08_28_frozen.pb'
graph_def = load_graph_def(model_filepath)
graph = load_graph(graph_def)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(graph=graph, config=config)
print_memory_usage(sess)
这会产生错误:
WARNING: Logging before flag parsing goes to stderr.
W1109 23:25:09.024481 140071828465472 deprecation_wrapper.py:119] From pb_memory_usage.py:5: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
W1109 23:25:09.024652 140071828465472 deprecation_wrapper.py:119] From pb_memory_usage.py:6: The name tf.GraphDef is deprecated. Please use tf.compat.v1.GraphDef instead.
W1109 23:25:09.454025 140071828465472 deprecation_wrapper.py:119] From pb_memory_usage.py:34: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
W1109 23:25:09.454198 140071828465472 deprecation_wrapper.py:119] From pb_memory_usage.py:36: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2019-11-09 23:25:09.454362: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-11-09 23:25:09.459323: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2019-11-09 23:25:09.659849: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x46edbb0 executing computations on platform CUDA. Devices:
2019-11-09 23:25:09.659873: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-11-09 23:25:09.659880: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (1): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-11-09 23:25:09.661890: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3468535000 Hz
2019-11-09 23:25:09.662429: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x52564b0 executing computations on platform Host. Devices:
2019-11-09 23:25:09.662447: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>
2019-11-09 23:25:09.664178: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:01:00.0
2019-11-09 23:25:09.664992: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 1 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:02:00.0
2019-11-09 23:25:09.665185: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2019-11-09 23:25:09.666079: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2019-11-09 23:25:09.666819: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2019-11-09 23:25:09.667017: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2019-11-09 23:25:09.668051: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2019-11-09 23:25:09.668813: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2019-11-09 23:25:09.671132: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2019-11-09 23:25:09.675589: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0, 1
2019-11-09 23:25:09.675617: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2019-11-09 23:25:09.677460: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-11-09 23:25:09.677473: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 1
2019-11-09 23:25:09.677478: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N Y
2019-11-09 23:25:09.677482: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 1: Y N
2019-11-09 23:25:09.680015: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10457 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
2019-11-09 23:25:09.681237: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10479 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1)
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 303, in __init__
fetch, allow_tensor=True, allow_operation=True))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 3796, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py", line 3875, in _as_graph_element_locked
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("MaxBytesInUse:0", shape=(), dtype=int64) is not an element of this graph.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "pb_memory_usage.py", line 37, in <module>
print_memory_usage(sess)
File "pb_memory_usage.py", line 28, in print_memory_usage
print("Max memory usage: ", convert_units(sess.run(MaxBytesInUse())))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 950, in run
run_metadata_ptr)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1158, in _run
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 474, in __init__
self._fetch_mapper = _FetchMapper.for_fetch(fetches)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 274, in for_fetch
return _ElementFetchMapper(fetches, contraction_fn)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 310, in __init__
'Tensor. (%s)' % (fetch, str(e)))
ValueError: Fetch argument <tf.Tensor 'MaxBytesInUse:0' shape=() dtype=int64> cannot be interpreted as a Tensor. (Tensor Tensor("MaxBytesInUse:0", shape=(), dtype=int64) is not an element of this graph.)
最佳答案
您的 session 使用在 load_graph
函数中创建的图形。但是,MaxBytesInUse
运算符是在默认图上创建的(您可以使用 tf.get_default_graph()
获取)。这意味着运算符不是 session 使用的图形的一部分。
为了解决这个问题,您可以在创建运算符时指定正确的图形:
from tensorflow.contrib.memory_stats import MaxBytesInUse
with sess.graph.as_default():
print("Max memory usage: ", convert_units(sess.run(MaxBytesInUse())))
关于python - Tensorflow:在 pb 模型中使用 tensorflow.contrib.memory_stats.MaxBytesInUse,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58783223/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!