- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
以下代码计算实数对称矩阵的特征值分解。然后,计算第一特征值相对于矩阵的梯度。这完成了三次:1) 使用解析公式,2) 使用 TensorFlow,3) 使用 PyTorch。这会产生三种不同的结果。有人可以向我解释这种行为吗?
import numpy as np
import torch
import tensorflow as tf
np.set_printoptions(precision=3)
np.random.seed(123)
# random matrix
matrix_np = np.random.randn(4, 4)
# make symmetric
matrix_np = matrix_np + matrix_np.T
matrix_torch = torch.autograd.Variable(torch.from_numpy(matrix_np), requires_grad=True)
matrix_tf = tf.constant(matrix_np, dtype=tf.float64)
#
# compute eigenvalue decompositions
#
# NumPy
eigvals_np, eigvecs_np = np.linalg.eigh(matrix_np)
# PyTorch
eigvals_torch, eigvecs_torch = torch.symeig(matrix_torch, eigenvectors=True, upper=True)
# TensorFlow
eigvals_tf, eigvecs_tf = tf.linalg.eigh(matrix_tf)
# make sure all three versions computed the same eigenvalues
if not np.allclose(eigvals_np, eigvals_torch.data.numpy()):
print('NumPy and PyTorch have different eigenvalues')
if not np.allclose(eigvals_np, tf.keras.backend.eval(eigvals_tf)):
print('NumPy and TensorFlow have different eigenvalues')
#
# compute derivative of first eigenvalue with respect to the matrix
#
# analytic gradient, see "On differentiating eigenvalues and eigenvectors" by Jan R. Magnus
grad_analytic = np.outer(eigvecs_np[:, 0], eigvecs_np[:, 0])
# PyTorch gradient
eigvals_torch[0].backward()
grad_torch = matrix_torch.grad.numpy()
# TensorFlow gradient
grad_tf = tf.gradients(eigvals_tf[0], matrix_tf)[0]
grad_tf = tf.keras.backend.eval(grad_tf)
#
# print all derivatives
#
print('-'*6, 'analytic gradient', '-'*6)
print(grad_analytic)
print('-'*6, 'Pytorch gradient', '-'*6)
print(grad_torch)
print('-'*6, 'TensorFlow gradient', '-'*6)
print(grad_tf)
打印
------ analytic gradient ------
[[ 0.312 -0.204 -0.398 -0.12 ]
[-0.204 0.133 0.26 0.079]
[-0.398 0.26 0.509 0.154]
[-0.12 0.079 0.154 0.046]]
------ Pytorch gradient ------
[[ 0.312 -0.407 -0.797 -0.241]
[ 0. 0.133 0.52 0.157]
[ 0. 0. 0.509 0.308]
[ 0. 0. 0. 0.046]]
------ TensorFlow gradient ------
[[ 0.312 0. 0. 0. ]
[-0.407 0.133 0. 0. ]
[-0.797 0.52 0.509 0. ]
[-0.241 0.157 0.308 0.046]]
三个结果的主对角线完全相同。 TensorFlow 和 PyTorch 的非对角线元素是解析元素的两倍或等于零。
这是有意为之的行为吗?为什么没有记录在案?梯度有误吗?
版本信息:TensorFlow 1.14.0、PyTorch 1.0.1
最佳答案
关于保证对称的矩阵的梯度并不是真正明确定义的(偏离对角线),因为有效的实现可能取决于元素或其相反元素(或两者的加权和) .
例如,对 2x2 对称矩阵 x
的元素求和的函数的有效实现是
f(x) = x[0][0]+x[0][1]+x[1][0]+x[1][1]
但另一个有效的实现是
f(x) = x[0][0]+x[1][1]+2*x[0][1]
如果对称矩阵是保证矩阵始终对称的较大计算的一部分(例如,x = [[a, b], [b, c]]
,其中 a
、b
和 c
是一些标量),则较大计算的梯度不受您定义对称函数梯度的确切方式的影响-matrix(在我在这里运行的示例中,我们将有 df/da = df/dc = 1
和 df/db = 2
定义 f
).
也就是说,对称梯度是一个不错的选择(如评论中链接的 PyTorch PR 中所述),因为这意味着如果您碰巧在对称矩阵上进行梯度下降更新,矩阵将保持对称。
另外,请注意 TensorFlow 会执行 document只有矩阵的下三角部分用于计算,deliberately adjusts相应地报告梯度。
关于numpy - 为什么特征值分解的 TensorFlow 和 PyTorch 梯度彼此不同,解析解也不同?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58856160/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!