- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 Tensorflow Probability 中使用混合多项式离散选择模型。该函数应在 3 个备选方案中进行选择。所选择的备选方案由 CHOSEN(#observationsx3 张量)指定。下面是对代码的更新,以反射(reflect)我在问题上的进展(但问题仍然存在)。
我目前收到错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [6768,3] vs. [1,3,6768] [Op:Mul]
回溯表明问题出在对联合分布的最终组件(即 tfp.Independent(tfp.Multinomial(...)) 的 log_prob() 的调用中
主要组件是(感谢 Padarn Wilson 帮助修复联合分布定义):
@tf.function
def affine(x, kernel_diag, bias=tf.zeros([])):
"""`kernel_diag * x + bias` with broadcasting."""
kernel_diag = tf.ones_like(x) * kernel_diag
bias = tf.ones_like(x) * bias
return x * kernel_diag + bias
def mmnl_func():
adj_AV_train = (tf.ones(num_idx) - AV[:,0]) * tf.constant(-9999.)
adj_AV_SM = (tf.ones(num_idx) - AV[:,1]) * tf.constant(-9999.)
adj_AV_car = (tf.ones(num_idx) - AV[:,2]) * tf.constant(-9999.)
return tfd.JointDistributionSequential([
tfd.Normal(loc=0., scale=1e5), # mu_b_time
tfd.HalfCauchy(loc=0., scale=5), # sigma_b_time
lambda sigma_b_time,mu_b_time: tfd.MultivariateNormalDiag( # b_time
loc=affine(tf.ones([num_idx]), mu_b_time[..., tf.newaxis]),
scale_diag=sigma_b_time*tf.ones(num_idx)),
tfd.Normal(loc=0., scale=1e5), # a_train
tfd.Normal(loc=0., scale=1e5), # a_car
tfd.Normal(loc=0., scale=1e5), # b_cost
lambda b_cost,a_car,a_train,b_time: tfd.Independent(tfd.Multinomial(
total_count=1,
logits=tf.stack([
affine(DATA[:,0], tf.gather(b_time, IDX[:,0], axis=-1), (a_train + b_cost * DATA[:,1] + adj_AV_train)),
affine(DATA[:,2], tf.gather(b_time, IDX[:,0], axis=-1), (b_cost * DATA[:,3] + adj_AV_SM)),
affine(DATA[:,4], tf.gather(b_time, IDX[:,0], axis=-1), (a_car + b_cost * DATA[:,5] + adj_AV_car))
], axis=1)
),reinterpreted_batch_ndims=1)
])
@tf.function
def mmnl_log_prob(mu_b_time, sigma_b_time, b_time, a_train, a_car, b_cost):
return mmnl_func().log_prob(
[mu_b_time, sigma_b_time, b_time, a_train, a_car, b_cost, CHOICE])
# Based on https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args
# change constant values to tf.constant()
nuts_samples = tf.constant(1000)
nuts_burnin = tf.constant(500)
num_chains = tf.constant(1)
## Initial step size
init_step_size= tf.constant(0.3)
# Set the chain's start state.
initial_state = [
tf.zeros([num_chains], dtype=tf.float32, name="init_mu_b_time"),
tf.zeros([num_chains], dtype=tf.float32, name="init_sigma_b_time"),
tf.zeros([num_chains, num_idx], dtype=tf.float32, name="init_b_time"),
tf.zeros([num_chains], dtype=tf.float32, name="init_a_train"),
tf.zeros([num_chains], dtype=tf.float32, name="init_a_car"),
tf.zeros([num_chains], dtype=tf.float32, name="init_b_cost")
]
## NUTS (using inner step size averaging step)
##
@tf.function
def nuts_sampler(init):
nuts_kernel = tfp.mcmc.NoUTurnSampler(
target_log_prob_fn=mmnl_log_prob,
step_size=init_step_size,
)
adapt_nuts_kernel = tfp.mcmc.DualAveragingStepSizeAdaptation(
inner_kernel=nuts_kernel,
num_adaptation_steps=nuts_burnin,
step_size_getter_fn=lambda pkr: pkr.step_size,
log_accept_prob_getter_fn=lambda pkr: pkr.log_accept_ratio,
step_size_setter_fn=lambda pkr, new_step_size: pkr._replace(step_size=new_step_size)
)
samples_nuts_, stats_nuts_ = tfp.mcmc.sample_chain(
num_results=nuts_samples,
current_state=initial_state,
kernel=adapt_nuts_kernel,
num_burnin_steps=tf.constant(100),
parallel_iterations=tf.constant(5))
return samples_nuts_, stats_nuts_
samples_nuts, stats_nuts = nuts_sampler(initial_state)
最佳答案
这很可能是您的初始状态和链数的问题。您可以尝试在采样器调用之外初始化您的内核:
nuts_kernel = tfp.mcmc.NoUTurnSampler(
target_log_prob_fn=mmnl_log_prob,
step_size=init_step_size,
)
adapt_nuts_kernel = tfp.mcmc.DualAveragingStepSizeAdaptation(
inner_kernel=nuts_kernel,
num_adaptation_steps=nuts_burnin,
step_size_getter_fn=lambda pkr: pkr.step_size,
log_accept_prob_getter_fn=lambda pkr: pkr.log_accept_ratio,
step_size_setter_fn=lambda pkr, new_step_size: pkr._replace(step_size=new_step_size)
)
然后做
nuts_kernel.bootstrap_results(initial_state)
并调查 logL 的形状,并返回提案状态。
另一件事是将您的初始状态输入您的对数似然/后验,并查看返回的对数似然的维度是否与您认为应该的相匹配(如果您正在做多个链,那么也许应该是返回 # 链日志可能性)。
据我了解,批量维度(# chains)必须是所有矢量化计算中的第一个维度。
最后一部分of my blog post on tensorflow and custom likelihoods有执行此操作的示例的工作代码。
关于python - Tensorflow Probability 中多项式模型的规范,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61236004/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!