- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
它将 GPU 添加为设备 0,在其上分配内存,然后将 ML 模型加载到 CPU 设备内存中并仅使用 CPU 运行推理。 nvidia-smi 上的 GPU-util 永远不会离开 0%。
谁能帮我弄清楚为什么会这样,应该改变什么?
设置:
操作系统 EC2 g4dn.xlarge 上的亚马逊/深度学习 AMI (Ubuntu 18.04)
GPU:特斯拉 T4
模型: 预训练 gpt2-xl tensorflow from huggingface ,我将其卡住到 SavedModel 中并上传到 S3。
Docker: 配备深度学习 AMI。我已经检查并确认 nvidia-smi 运行容器化,所以这不是 nvidia+docker 问题。
TF Serving:我使用下面的 Dockerfile 来拉取最新的 gpu 图像,并在构建时将模型直接下载到其中:
FROM tensorflow/serving:latest-gpu
RUN apt-get update
ENV TZ=America
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
RUN apt-get update
RUN apt-get install -y awscli
ENV AWS_ACCESS_KEY_ID=...
ENV AWS_SECRET_ACCESS_KEY=...
ARG model_name
ENV MODEL_NAME=$model_name
# Use AWS CLI to download the SavedModel into the docker container from S3 bucket
RUN aws s3 cp s3://v3-models/models/pretrained_tf_serving/${MODEL_NAME} /models/${MODEL_NAME} --recursive
EXPOSE 8500
我使用以下命令构建并运行上述 Dockerfile:
#!/bin/bash
# first build the image with the model_name arg, and tag it as xl-serving
docker build -t xl-serving --build-arg model_name=gpt2-xl ../../model_server
# then run it with gpus, exposing gRPC port
docker run -it --rm --gpus all --runtime nvidia -p 8500:8500 xl-serving
运行服务容器打印此输出。请注意已添加 GPU。
2020-11-06 05:25:34.671071: I tensorflow_serving/model_servers/server.cc:87] Building single TensorFlow model file config: model_name: gpt2-xl model_base_path: /models/gpt2-xl
2020-11-06 05:25:34.671274: I tensorflow_serving/model_servers/server_core.cc:464] Adding/updating models.
2020-11-06 05:25:34.671295: I tensorflow_serving/model_servers/server_core.cc:575] (Re-)adding model: gpt2-xl
2020-11-06 05:25:34.771644: I tensorflow_serving/core/basic_manager.cc:739] Successfully reserved resources to load servable {name: gpt2-xl version: 1}
2020-11-06 05:25:34.771673: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: gpt2-xl version: 1}
2020-11-06 05:25:34.771687: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: gpt2-xl version: 1}
2020-11-06 05:25:34.771724: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /models/gpt2-xl/1
2020-11-06 05:25:35.222512: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve }
2020-11-06 05:25:35.222545: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:234] Reading SavedModel debug info (if present) from: /models/gpt2-xl/1
2020-11-06 05:25:35.222672: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2020-11-06 05:25:35.223994: I external/org_tensorflow/tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
2020-11-06 05:25:35.262238: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:35.263132: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties:
pciBusID: 0000:00:1e.0 name: Tesla T4 computeCapability: 7.5
coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2020-11-06 05:25:35.263149: I external/org_tensorflow/tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-11-06 05:25:35.263236: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:35.264122: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:35.264948: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0
2020-11-06 05:25:36.185140: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-11-06 05:25:36.185165: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1263] 0
2020-11-06 05:25:36.185171: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0: N
2020-11-06 05:25:36.185334: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:36.186222: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:36.187046: I external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:982] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-11-06 05:25:36.187852: I external/org_tensorflow/tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 13896 MB memory) -> physical GPU (device: 0, name: Tesla T4, pci bus id: 0000:00:1e.0, compute capability: 7.5)
2020-11-06 05:25:37.279837: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:199] Restoring SavedModel bundle.
2020-11-06 05:25:56.154008: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:183] Running initialization op on SavedModel bundle at path: /models/gpt2-xl/1
2020-11-06 05:25:57.551535: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:303] SavedModel load for tags { serve }; Status: success: OK. Took 22777844 microseconds.
2020-11-06 05:25:57.832736: I tensorflow_serving/servables/tensorflow/saved_model_warmup_util.cc:59] No warmup data file found at /models/gpt2-xl/1/assets.extra/tf_serving_warmup_requests
2020-11-06 05:25:57.835030: I tensorflow_serving/core/loader_harness.cc:87] Successfully loaded servable version {name: gpt2-xl version: 1}
2020-11-06 05:25:57.838329: I tensorflow_serving/model_servers/server.cc:367] Running gRPC ModelServer at 0.0.0.0:8500 ...
[warn] getaddrinfo: address family for nodename not supported
2020-11-06 05:25:57.840415: I tensorflow_serving/model_servers/server.cc:387] Exporting HTTP/REST API at:localhost:8501 ...
[evhttp_server.cc : 238] NET_LOG: Entering the event loop ...
然后我用一个单一的、非批处理的 gRPC 调用访问这个服务器。它将成功运行并返回正确的 GPT2 输出。但是,它需要的时间与 CPU 上的相同设置一样长。 htop 显示 8gb 的 ram(gpt2-xl 型号大小)已加载到 CPU 机器中。然后它显示 TF 服务进程正在运行,并最大化一个或两个 CPU 内核。它似乎只在 CPU 上运行。
这是调用运行时 nvidia-smi 的样子。注意分配的内存和 0% GPU-Util:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 36C P0 26W / 70W | 14240MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 13357 C tensorflow_model_server 14221MiB |
+-----------------------------------------------------------------------------+
我在网上搜索过,找不到任何关于此的建议。我发现最接近的是这个 github 问题:GPU utilization with TF serving #1440 ,修复程序对我不起作用。他们处理的是低 GPU 利用率,我处理的是 0%。
对问题是什么有什么建议吗?
非常感谢。几天来我一直在用头撞墙,所以我非常感谢你的帮助:)
我写了一个 python 脚本(如下)来使用 tensorflow==2.3.0 来加载模型并运行它。它在 CUDA=11.0 的 conda 环境中运行。它在 GPU 上成功运行推理,比我在 TF 服务上获得的快 15 倍。
import tensorflow as tf
import numpy as np
model = tf.saved_model.load('/home/ubuntu/models/gpt2-xl/1/')
servable = model.signatures["forward"]
# Create input tensor
tensor_in = tf.constant([[198, 15667, 6530, 25, 29437, 1706, 1610, 977, 948, 33611]])
# Run a loop of 10 inferences on the model, to predict the next 10 tokens.
for i in range(10):
pred = servable(tensor_in)
logits = pred['output_0']
logits = logits[:, -1, :] / 0.8
next_id = tf.random.categorical(tf.nn.log_softmax(logits, axis=-1), num_samples=1)
next_id = tf.dtypes.cast(next_id, tf.int32).numpy()
tensor_in = np.concatenate((tensor_in, next_id), axis=1)
接下来:将尝试在容器外运行 tf-serving。即将更新...
最佳答案
你是如何保存你的模型的?保存模型时添加 clear_devices=True
并重试。
关于docker - Tensorflow-serving docker 容器添加了 GPU 设备,但 GPU 的利用率为 0%,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64709679/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!