gpt4 book ai didi

r - 来自成对比较 p 值的紧凑字母显示 (CLD)

转载 作者:行者123 更新时间:2023-12-05 06:56:25 26 4
gpt4 key购买 nike

我一直在努力根据 p 值的成对比较表来制作我自己的 CLD。我知道 multcomp 是可能的,但我想生成我自己的 DIY 函数,它可以适应不同的事后输出。当然,有两个具有挑战性的方面:组生成背后的逻辑和编程实现。

我的“群组生成背后的逻辑”是这样的:

  1. 按平均顺序处理。
  2. 将均值最高的治疗分配给“a”组
  3. 从那里开始,循环所有治疗。将每种治疗i与所有现有组中的治疗进行比较。
  4. 如果治疗 i 与现有组的所有治疗没有区别,则将其分配给该组。
  5. 如果治疗 i 与所有现有组中的至少一个元素不同,则创建一个新组,其中治疗 i 和所有与 i 没有显着差异的治疗已分配。

我使用循环是因为我发现它更容易看到我在做什么。

如果有人能指出逻辑或实现中的任何问题,那就太好了。如果有人能发现任何错误或提供有关如何使其工作的任何提示,我们将不胜感激。

我分别上传数据、每个处理的平均值,以及所有组之间的成对比较(用 agricolae::HSD.test 生成)和 p 值(成对比较文件包括重复数据,因为有是两列中所有可能的组合,这意味着所有处理都显示在两列中)

#LOADING THE DATA
contrasts <- read.table("https://raw.githubusercontent.com/paracon/cld_data/main/contrasts.csv",
header=TRUE)

means <- read.table("https://raw.githubusercontent.com/paracon/cld_data/main/means.csv",
header=TRUE)

#################################################################################

# WE ORDER TREATMENTS BY MEAN VALUE
means <- means[rev(order(means$mean)),]

# WE CREATE A DATAFRAME WHERE ALL GROUPS WILL BE ADDED AND
# WHERE THE TREATMENT WITH HIGHEST MEAN IS ASSIGNED GROUP "a"
existing_groups <- rbind(data.frame(trts=character(),
groups=character()),
data.frame(trts=as.character(means$treat[1]),
groups=as.character(letters[1]))
)


# WE LOOP ALONG ALL TREATMENTS (FROM means FILE) AFTER THE ONE WITH HIGHEST MEAN
for (i in 2:length(means$treat)){

# WE SUBSET FOR ALL THE CONTRASTS FOR TREATMENT i
contrasts_i <- contrasts[as.character(contrasts$col1)==as.character(gsub(" ", "", means[i,]$treat, fixed = TRUE)),]

# WE CREATE AN EMPTY DATAFRAME WHERE WE WILL ADD ALL TREATMENTS NOT DIFFERENT FROM TREATMENT i
same_as_checked <- data.frame(trts=as.character(),
groups=as.character())

# WE LOOP ALONG ALL ALREADY EXISTING GROUPS
for (g in unique(existing_groups$groups)){

# WE SUBSET FOR ALL THE TREATMENTS IN GROUP g
existing_groups_g <- existing_groups[existing_groups$groups==g,]

# WE LOOP ALONG ALL THE TREATMENTS IN GROUP g
for (j in 1:length(existing_groups_g$trts)){

existing_groups_j <- existing_groups_g[j,]
existing_groups_j$trts <- as.character(gsub(" ", "", existing_groups_j$trts, fixed = TRUE))
# WE CHECK PAIRWISE COMPARISON BETWEEN TREATMENT j IN THE GROUP AND contrasts_i$col2
# AND ALL ELEMENTS OF THAT GROUP

try(if(contrasts_i[contrasts_i$col2==existing_groups_j$trts,]$p_val>=0.05){

same_as_checked <- rbind(same_as_checked,
data.frame(trts=as.character(existing_groups_j$trts),
groups=NA))
},silent=TRUE)
}
}

print(means[i,]$treat)
print(same_as_checked$trts)

# same_as_checked SHOULD INCLUDE ALL THE TREATMENTS WHICH ARE NOT DIFFERENT FROM TREATMENT i


group_with_no_differences_exists <- "no"

# WE LOOP AGAIN ALONG ALL ALREADY EXISTING GROUPS
# NOW TO COMPARE THE TREATMENTS IN same_as_checked WITH ALL EXISTING GROUPS
for (g in unique(existing_groups$groups)){

# WE SUBSET FOR ALL THE TREATMENTS IN GROUP g
existing_groups_g <- existing_groups[existing_groups$groups==g,]

# WE CHECK IF GROUP g IS IDENTICAL TO same_as_checked
try(group_with_no_differences_exists <- ifelse(isTRUE(all.equal(unique(same_as_checked[order(same_as_checked$trts),]$trts),
unique(existing_groups_g[order(existing_groups_g$groups),]$trts))),
"yes","no"), silent=TRUE)

# IF GROUP IS IDENTICAL, WE WILL ADD TREATMENT i TO THIS GROUP
if (group_with_no_differences_exists=="yes"){
new_groups <- data.frame(trts=as.character(unique(contrasts_i$col1)),
groups=as.character(letters[which(letters==existing_groups_j$groups)])
)
}

# IF GROUP IS DIFFERENT, WE CREATE A NEW GROUP, WITH TREATMENT i AND ALL THE TREATMENTS IN same_as_checked

#same_as_checked IS NOT EMPTY:
if (group_with_no_differences_exists=="no" & nrow(same_as_checked)!=0){
new_groups <- rbind(data.frame(trts=same_as_checked$trts,
groups=rep(x=as.character(letters[which(letters==existing_groups_j$groups) + 1]),
times=length(same_as_checked$groups))
),
data.frame(trts=as.character(unique(contrasts_i$col1)),
groups=as.character(letters[which(letters==existing_groups_j$groups) + 1])
)
)
}
#same_as_checked IS EMPTY, TREATMENT i 'IS ALONE' IN THE NEW GROUP:
if (group_with_no_differences_exists=="no" & nrow(same_as_checked)==0){
new_groups <- data.frame(trts=as.character(unique(contrasts_i$col1)),
groups=as.character(letters[which(letters==existing_groups_j$groups) + 1])
)

}
}

existing_groups <- rbind(existing_groups, new_groups)

}

#################################################################################

library(tidyverse)

unique(existing_groups) %>%
group_by(trts) %>%
dplyr::summarise(
groups = paste(as.character(groups), collapse="")
)

这可行,但会生成冗余组,必须将其删除。要删除这些组,我应用了不太漂亮的代码:

#COMPARING EACH GROUP WITH THE NEXT GROUP (BY ALPHABETICAL ORDER),
#IF ALL TREATMENTS IN A GROUP ARE INCLUDED IN THE NEXT GROUP, THE FORMER IS REMOVED (CONVERTED TO NA)
for (g in unique(as.character(existing_groups$groups)))try({
existing_trts_g <- as.character(unique(existing_groups[existing_groups$groups==g,]$trts))
existing_trts_g_1 <- as.character(unique(existing_groups[existing_groups$groups==as.character(letters[which(letters==g) + 1]),]$trts))
if (existing_trts_g_1[!(is.na(existing_trts_g_1))] %contain% existing_trts_g[!(is.na(existing_trts_g))]){
existing_groups[!(is.na(existing_groups$groups)) & existing_groups$groups==g,]$groups <- NA
}
existing_groups <- existing_groups[!(is.na(existing_groups$groups)),]
},silent=TRUE)


for (g in unique(as.character(existing_groups$groups))){
nth <- match(g,unique(as.character(existing_groups$groups)))
existing_groups[existing_groups$groups==g,]$groups <- letters[nth]
}

预期的组(根据 agricolae::HSD.test)是:

一个:B100;ab: KT50, T10;abc: T35, KT10;公元前:T50、T100、KT35;c: KT100

您也可以在这里看到它们:https://raw.githubusercontent.com/paracon/cld_data/main/output.csv

最佳答案

也许这有帮助。

查找更多详情 here .

mod <- lm(Sepal.Width ~ Species, data = iris)

mod_means_contr <- emmeans::emmeans(object = mod,
pairwise ~ "Species",
adjust = "tukey")

mod_means <- multcomp::cld(object = mod_means_contr$emmeans,
Letters = letters)

### Bonus plot
library(ggplot2)

ggplot(data = mod_means,
aes(x = Species, y = emmean)) +
geom_point() +
geom_errorbar(aes(ymin = lower.CL,
ymax = upper.CL),
width = 0.2) +
geom_text(aes(label = gsub(" ", "", .group)),
position = position_nudge(x = 0.2)) +
labs(caption = "Means followed by a common letter are\nnot significantly different according to the Tukey-test")

reprex package 创建于 2021-06-03 (v2.0.0)

关于r - 来自成对比较 p 值的紧凑字母显示 (CLD),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65147798/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com