- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试估计 4 个参数(kdoc1、kdoc2、S1、S2),使用 GEKKO 求解代数常方程组,最小化观察值和预测值之间残差的平方和。我在测量数据和预测数据之间没有得到很好的调整,你对我在代码中做错了什么有什么建议吗?
此外,我也在尝试添加另一组测量数据。我希望模型使用两个测量数据集来估计参数,我需要使用这两个数据集来最小化残差之和。您知道如何在代码中执行此操作吗?
我已经使用建议 python - Infrequent measurements in Gekko with extra simulation points - Stack Overflow 添加了额外的点来帮助求解器收敛
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math as math
import pandas as pd
#TOC=5.93 mg/L
#M2 C1 5mg/L
#time: [0,0.08333,0.5,1,4,22.61667]; C2 measured: [0,9.33e-5,8.55e-5,8.55e-5,7.77e-5,7.00e-5]
#M4 C1 20mg/l
#time: [0,0.08333,0.5,1,4,22.61667]; C2 measured: [0,2.92e-4,2.72e-4,2.92e-4,2.72e-4,2.14e-4]
#measurements
t_data = [0.08333,0.5,1,4,22.61667]
x_data = [9.33e-5,8.55e-5,8.55e-5,7.77e-5,7.00e-5]
#x_data2 = [2.92e-4,2.72e-4,2.92e-4,2.72e-4,2.14e-4]
df1 = pd.DataFrame({'time':t_data,'x':x_data})
df1.set_index('time', inplace=True)
# simulation time points
df2 = pd.DataFrame({'time':np.linspace(0,25,51)}) #(0,25,51)
df2.set_index('time', inplace=True)
# merge dataframes
df = df2.join(df1,how='outer')
# get True (1) or False (0) for measurement
df['meas'] = (df['x'].values==df['x'].values).astype(int)
# replace NaN with zeros
df0 = df.fillna(value=0)
#Estimator Model
m = GEKKO()
m.time = df.index.values
# adjustable parameters
kdoc1 = m.FV() #m-1h-1
kdoc2 = m.FV() #m-1h-1
S1 = m.FV()
S2 = m.FV()
#State variables
# M (mol/L)
C0 = m.Var(value=8.00e-5)
C1 = m.Var(value=1.36e-3)
C2 = m.Var(value=x_data[0])
C2m = m.Param(df0['x'].values)
meas = m.Param(df0['meas'].values)
m.Minimize(meas*(C2-C2m)**2)
C3 = m.Var(value=0)
C4 = m.Var(value=3.16e-8)
C5 = m.Var(value=3.83e-7)
C6 = m.Var(value=0)
C7 = m.Var(value=0)
C8 = m.Var(value=0)
C9 = m.Var(value=0)
C10 = m.Var(value=0)
C11 = m.Var(value=0)
C12 = m.Var(value=3.21e-3)
TOC = m.Var(value=5.93)#mg-C/L
cC1 = m.Var(value=0)
cC2 = m.Var(value=0)
#temperature ºC
T = 20
#Rate constants
k1 = 2040000000*math.exp(-1887/(273.15+T))*3600
k2 = 138000000*math.exp(-8800/(273.15+T))*3600
k3 = 300000*math.exp(-2010/(273.15+T))*3600
k4 = 0.00000065*3600
k6 = 26700*3600
k7 = 167*3600
k8 = 27700*3600
k9 = 8300*3600
k10 = 0
k5 = 37800000000*math.exp(-2169/(273.15+T))*C4+2.52e25*math.exp(-16860/(273.15+T))*C10+0.87*math.exp(-503/(273.15+T))*C9
r1 = k1 * C0 * C1
r2 = k2 * C2
r3 = k3 * C0 * C2
r4 = k4 * C3
r5 = k5 * C2 * C2
r6 = k6 * C3 * C1* C4
r7 = k7 * C3 * C5
r8 = k8 * C6 * C3
r9 = k9 * C6 * C2
r10 = k10 * C2 * C3
r11 = kdoc1*S1*TOC*C2/12000
r12 = kdoc2*S2*TOC*C0/12000
t = m.Param(value=m.time)
m.Equation(C0.dt()== -r1 + r2 - r3 + r4 + r8 - r12)
m.Equation(C1.dt()== -r1 + r2 + r5 - r6 + r11)
m.Equation(C2.dt()== r1 - r2 - r3 + r4 - r5 + r6 - r9 - r10 - r11)
m.Equation(C3.dt()== r3 - r4 + r5 - r6 - r7 - r8 - r10)
m.Equation(C4.dt()== 0)
m.Equation(C5 == 1e-14/C4)
m.Equation(C6.dt()== r7 - r8 - r9)
m.Equation(C7 == (3.16e-8*C0)/C4)
m.Equation(C1 == (5.01e-10*C8)/C4)
m.Equation(C11 == (5.01e-11*C10)/C4)
m.Equation(C9 == (5.01e-7*C9)/C4)
m.Equation(C10 == C12 - 2*C11 - C5 + C4)
m.Equation(C12.dt()== 0)
m.Equation(TOC.dt()== 0)
m.Equation(cC1 == 17000*C1)
m.Equation(cC2 == 51500*C2)
#Application options
m.options.SOLVER = 1 #APOPT solver
m.options.IMODE = 5 #Dynamic Simultaneous - estimation
m.options.EV_TYPE = 2 #absolute error
m.options.NODES = 5 #collocation nodes (2,5)
if True:
kdoc1.STATUS=1
kdoc2.STATUS=1
S1.STATUS=1
S2.STATUS=1
#Solve
m.solve(disp=False)
#Results
data={'Time (h)':t,'C0 (M)':C0.value,'C1 (M)':C1.value, 'C2 (M)':C2.value,'C3 (M)':C3.value,'C4 (M)':C4.value,'C5 (M)':C5.value,'C6 (M)':C6.value,'C7 (M)':C7.value,'C8 (M)':C8.value,'C9 (M)':C9.value,'C10 (M)':C10.value,'C11 (M)':C11.value,'c12 (M)':C12.value}
dfr = pd.DataFrame(data, columns=['Time (h)','C0 (M)','C1 (M)','C2 (M)','C3 (M)','C4 (M)','C5 (M)','C6 (M)','C7 (M)','C8 (M)','C9 (M)','C10 (M)','C11 (M)','C12 (M)'])
#dfr.to_csv(r'C:\dfestimation.csv', index = False)
print('Solution')
print('kdoc1 = ' + str(kdoc1.value[0]))
print('kdoc2 = ' + str(kdoc2.value[0]))
print('S1 = ' + str(S1.value[0]))
print('S2 = ' + str(S2.value[0]))
plt.figure(1,figsize=(12,8))
plt.subplot(3,1,1)
plt.plot(m.time,C2.value,'bo',label='Predicted')
plt.plot(m.time,df['x'].values,'rs',label='Meas')
plt.plot(m.time,C2.value,label ='C2')
plt.legend(loc='best')
plt.subplot(3,1,2)
plt.plot(m.time,cC2.value,label ='C2')
plt.plot(m.time,cC1.value,label ='C1')
plt.legend(loc='best')
plt.subplot(3,1,3)
plt.plot(m.time,C0.value,label ='C0')
plt.plot(m.time,C1.value,label ='C1')
plt.plot(m.time,C3.value,label ='C3')
plt.plot(m.time,C4.value,label ='C4')
plt.plot(m.time,C5.value,label ='C5')
plt.plot(m.time,C6.value,label ='C6')
plt.plot(m.time,C7.value,label ='C7-')
plt.plot(m.time,C8.value,label ='C8')
plt.plot(m.time,C9.value,label ='C9')
plt.plot(m.time,C10.value,label ='C10')
plt.plot(m.time,C11.value,label ='C11')
plt.plot(m.time,C12.value,label ='C12')
plt.xlabel('time (h)')
plt.ylabel('Concentration (mol/L)')
plt.legend(loc='best')
最佳答案
这是更接近的新结果。
我向参数添加了约束并为它们提供了非零起始值 (1)。
kdoc1 = m.FV(1,lb=0.01,ub=10) #m-1h-1
kdoc2 = m.FV(1,lb=0.01,ub=10) #m-1h-1
S1 = m.FV(1,lb=0.01,ub=10)
S2 = m.FV(1,lb=0.01,ub=10)
计算了 C0
和 C1
的初始条件,因为它们在 C2
中产生了巨大的瞬时跳跃。如果这些初始浓度已知,那么您可能需要切换回固定的初始条件。
m.free_initial(C0)
m.free_initial(C1)
缩放了目标函数,因为 1e-4**2 已经是一个小数并且可能已经满足目标收敛标准。原问题的目标函数值很小。我让每个平方值大约等于 1 作为起点。
m.Minimize(meas*(1e4*(C2-C2m))**2)
这提供了一个合理的解决方案,您可以从中获得所需的回归结果。
kdoc1 = 3.7210285146
kdoc2 = 2.5743961631
S1 = 3.7210285146
S2 = 2.5743961631
参数值未在约束条件下结束,因此这意味着此解决方案是最优的。尽管参数约束在最后没有激活,但约束确实有助于在适当的搜索区域引导求解器。
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import math as math
import pandas as pd
#measurements
t_data = [0.08333,0.5,1,4,22.61667]
x_data = [9.33e-5,8.55e-5,8.55e-5,7.77e-5,7.00e-5]
#x_data2 = [2.92e-4,2.72e-4,2.92e-4,2.72e-4,2.14e-4]
df1 = pd.DataFrame({'time':t_data,'x':x_data})
df1.set_index('time', inplace=True)
# simulation time points
df2 = pd.DataFrame({'time':np.linspace(0,25,51)})
df2.set_index('time', inplace=True)
# merge dataframes
df = df2.join(df1,how='outer')
# get True (1) or False (0) for measurement
df['meas'] = (df['x'].values==df['x'].values).astype(int)
# replace NaN with zeros
df0 = df.fillna(value=0)
#Estimator Model
m = GEKKO()
m.time = df.index.values
# adjustable parameters
kdoc1 = m.FV(1,lb=0.01,ub=10) #m-1h-1
kdoc2 = m.FV(1,lb=0.01,ub=10) #m-1h-1
S1 = m.FV(1,lb=0.01,ub=10)
S2 = m.FV(1,lb=0.01,ub=10)
#State variables
# M (mol/L)
C0 = m.Var(value=8.00e-5,lb=0,ub=1e-3)
m.free_initial(C0)
C1 = m.Var(value=1.36e-3,lb=0,ub=2e-3)
m.free_initial(C1)
C2 = m.Var(value=x_data[0])
C2m = m.Param(df0['x'].values,lb=0)
meas = m.Param(df0['meas'].values)
m.Minimize(meas*(1e4*(C2-C2m))**2)
C3 = m.Var(value=0)
C4 = m.Var(value=3.16e-8)
C5 = m.Var(value=3.83e-7)
C6 = m.Var(value=0)
C7 = m.Var(value=0)
C8 = m.Var(value=0)
C9 = m.Var(value=0)
C10 = m.Var(value=0)
C11 = m.Var(value=0)
C12 = m.Var(value=3.21e-3)
TOC = m.Var(value=5.93)#mg-C/L
cC1 = m.Var(value=0)
cC2 = m.Var(value=0)
#temperature ºC
T = 20
#Rate constants
k1 = 2040000000*math.exp(-1887/(273.15+T))*3600
k2 = 138000000*math.exp(-8800/(273.15+T))*3600
k3 = 300000*math.exp(-2010/(273.15+T))*3600
k4 = 0.00000065*3600
k6 = 26700*3600
k7 = 167*3600
k8 = 27700*3600
k9 = 8300*3600
k10 = 0
k5 = 37800000000*math.exp(-2169/(273.15+T))*C4\
+2.52e25*math.exp(-16860/(273.15+T))*C10\
+0.87*math.exp(-503/(273.15+T))*C9
r1 = k1 * C0 * C1
r2 = k2 * C2
r3 = k3 * C0 * C2
r4 = k4 * C3
r5 = k5 * C2 * C2
r6 = k6 * C3 * C1* C4
r7 = k7 * C3 * C5
r8 = k8 * C6 * C3
r9 = k9 * C6 * C2
r10 = k10 * C2 * C3
r11 = kdoc1*S1*TOC*C2/12000
r12 = kdoc2*S2*TOC*C0/12000
t = m.Param(value=m.time)
m.Equation(C0.dt()== -r1 + r2 - r3 + r4 + r8 - r12)
m.Equation(C1.dt()== -r1 + r2 + r5 - r6 + r11)
m.Equation(C2.dt()== r1 - r2 - r3 + r4 - r5 + r6 - r9 - r10 - r11)
m.Equation(C3.dt()== r3 - r4 + r5 - r6 - r7 - r8 - r10)
m.Equation(C4.dt()== 0)
m.Equation(C5 == 1e-14/C4)
m.Equation(C6.dt()== r7 - r8 - r9)
m.Equation(C7 == (3.16e-8*C0)/C4)
m.Equation(C1 == (5.01e-10*C8)/C4)
m.Equation(C11 == (5.01e-11*C10)/C4)
m.Equation(C9 == (5.01e-7*C9)/C4)
m.Equation(C10 == C12 - 2*C11 - C5 + C4)
m.Equation(C12.dt()== 0)
m.Equation(TOC.dt()== 0)
m.Equation(cC1 == 17000*C1)
m.Equation(cC2 == 51500*C2)
#Application options
m.options.SOLVER = 3 #APOPT solver
m.options.IMODE = 5 #Dynamic Simultaneous - estimation
m.options.EV_TYPE = 2 #absolute error
m.options.NODES = 3 #collocation nodes (2,5)
if True:
kdoc1.STATUS=1
kdoc2.STATUS=1
S1.STATUS=1
S2.STATUS=1
#Solve
m.solve(disp=True)
print('Solution')
print('kdoc1 = ' + str(kdoc1.value[0]))
print('kdoc2 = ' + str(kdoc2.value[0]))
print('S1 = ' + str(S1.value[0]))
print('S2 = ' + str(S2.value[0]))
plt.figure(1,figsize=(8,5))
plt.subplot(2,1,1)
plt.plot(m.time,C2.value,'bo',label='Predicted')
plt.plot(m.time,df['x'].values,'rs',label='Meas')
plt.plot(m.time,C2.value,label ='C2')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(m.time,cC2.value,label ='C2')
plt.plot(m.time,cC1.value,label ='C1')
plt.legend(loc='best')
plt.xlabel('time (h)')
plt.figure(2,figsize=(12,8))
plt.subplot(4,3,1)
plt.plot(m.time,C0.value,label ='C0')
plt.legend()
plt.subplot(4,3,2)
plt.plot(m.time,C1.value,label ='C1')
plt.legend()
plt.subplot(4,3,3)
plt.plot(m.time,C3.value,label ='C3')
plt.legend()
plt.subplot(4,3,4)
plt.plot(m.time,C4.value,label ='C4')
plt.legend()
plt.subplot(4,3,5)
plt.plot(m.time,C5.value,label ='C5')
plt.legend()
plt.subplot(4,3,6)
plt.plot(m.time,C6.value,label ='C6')
plt.legend()
plt.subplot(4,3,7)
plt.plot(m.time,C7.value,label ='C7-')
plt.legend()
plt.subplot(4,3,8)
plt.plot(m.time,C8.value,label ='C8')
plt.legend()
plt.subplot(4,3,9)
plt.plot(m.time,C9.value,label ='C9')
plt.legend()
plt.xlabel('time (h)')
plt.subplot(4,3,10)
plt.plot(m.time,C10.value,label ='C10')
plt.legend()
plt.xlabel('time (h)')
plt.subplot(4,3,11)
plt.plot(m.time,C11.value,label ='C11')
plt.legend()
plt.xlabel('time (h)')
plt.subplot(4,3,12)
plt.plot(m.time,C12.value,label ='C12')
plt.legend()
plt.xlabel('time (h)')
plt.show()
关于python - 参数估计和最小二乘法最小化——Python 和 Gekko,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65628949/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!