gpt4 book ai didi

python - 使用 LU 分解求逆矩阵

转载 作者:行者123 更新时间:2023-12-05 06:37:05 40 4
gpt4 key购买 nike

我在 cython 中编写了以下 Matrix 类 用于矩阵求逆和其他一些线性代数运算。我尝试使用LU 分解 来计算矩阵的逆。代码速度很好。我试图实现 this codecython 中。我已经检查了我的每一行代码并与给定的代码进行了几次比较,但我仍然返回错误的答案。

矩阵.pyx

from libcpp.vector cimport vector
import cython
cimport cython
import numpy as np
cimport numpy as np
import ctypes
from libc.math cimport log, exp, pow, fabs
from libc.stdint cimport *
from libcpp.string cimport string
from libc.stdio cimport *
from libcpp cimport bool
cdef extern from "<iterator>" namespace "std" nogil:
cdef cppclass iterator[Category, T, Distance, Pointer, Reference]:
pass
cdef cppclass output_iterator_tag:
pass
cdef cppclass input_iterator_tag:
pass
cdef cppclass forward_iterator_tag(input_iterator_tag):
pass

cdef extern from "<algorithm>" namespace "std" nogil:
void fill [ForwardIterator, T](ForwardIterator, ForwardIterator, T& )

cdef class Matrix:
def __cinit__(self, size_t rows=0, size_t columns=0, bint Identity=False, bint ones=False):
self._rows=rows
self._columns=columns
self.matrix=new vector[double]()
self.matrix.resize(rows*columns)

if Identity:
self._IdentityMatrix()

if ones:
self._fillWithOnes()

def __dealloc__(self):
del self.matrix

property rows:
def __get__(self):
return self._rows
def __set__(self, size_t x):
self._rows = x
property columns:
def __get__(self):
return self._columns
def __set__(self, size_t y):
self._columns = y

cpdef double getVal(self, size_t r, size_t c):
return self.matrix[0][r*self._columns+c]

cpdef void setVal(self, size_t r, size_t c, double v):
self.matrix[0][r*self._columns+c] = v

@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _fillWithOnes(self):
fill(self.matrix.begin(),self.matrix.end(),1.)

cdef void _IdentityMatrix(self):
cdef size_t i
if (self._rows!=self._columns):
raise Exception('In order to generate identity matrix, the number of rows and columns must be equal')
else:
for i from 0 <= i <self._columns:
self.setVal(i,i,1.0)

@cython.boundscheck(False)
@cython.wraparound(False)
cpdef Matrix Inv(self):
cdef Matrix A_inverse = Matrix(self._rows,self._columns)
cdef MatrixList LU = ludcmp(self)
cdef Matrix A = LU.get(0)
cdef Matrix indx = LU.get(1)
cdef Matrix d = LU.get(2)
cdef double det = d.getVal(0,0)
cdef int i, j
cdef np.ndarray[np.float64_t, ndim=2] L = np.zeros((self._rows,self._columns),dtype=np.float64)
cdef np.ndarray[np.float64_t, ndim=2] U = np.zeros((self._rows,self._columns),dtype=np.float64)
cdef Matrix col = Matrix(self._rows,1)
for i from 0 <= i < self._rows:
for j from 0 <= j < self._columns:
if (j>i):
U[i,j]=A.getVal(i,j)
L[i,j]=0
elif (j<i):
U[i,j]=0
L[i,j]=A.getVal(i,j)
else:
U[i,j]=A.getVal(i,j)
L[i,j]=1
print "product of a lower triangular matrix L and an upper triangular matrix U:", np.dot(L, U)
for i from 0 <= i < self._rows:
det*= A.getVal(i,i)
for j from 0 <= j < self._columns:
if (i==j):
col.setVal(j,0,1)
col=lubksb(A, indx, col)
for j from 0 <= j < self._columns:
A_inverse.setVal(j,i,col.getVal(j,0))
print "determinant of matrix %.4f"%(det)
return A_inverse

cdef class MatrixList:
def __cinit__(self):
self.inner = []

cdef void append(self, Matrix a):
self.inner.append(a)

cdef Matrix get(self, int i):
return <Matrix> self.inner[i]

def __len__(self):
return len(self.inner)


@cython.boundscheck(False)
@cython.wraparound(False)
cdef Matrix lubksb(Matrix a, Matrix indx, Matrix b):
cdef int n = a.rows
cdef int i, ip, j
cdef int ii = 0
cdef double su
for i from 0 <= i < n:
ip = <int>indx.getVal(i,0)
su = b.getVal(ip,0)
b.setVal(ip,0, b.getVal(i,0))
if (ii):
for j from ii <= j < (i-1):
su -= a.getVal(i,j) * b.getVal(j,0)
elif (su):
ii = i
b.setVal(i, 0, su)
for i from n > i >= 0:
su = b.getVal(i,0)
for j from (i+1) <= j < n:
su -= a.getVal(i,j) * b.getVal(j,0)
b.setVal(i, 0, su/a.getVal(i,i))
return b

@cython.boundscheck(False)
@cython.wraparound(False)
cdef MatrixList ludcmp(Matrix a):
#Given a matrix a_{nxn}, this routine replaces it by the LU decomposition of a row-wise permutation of itself.
cdef MatrixList LU = MatrixList()
cdef int n = a.rows
cdef int i, j, k, imax
cdef double big, dum, su, temp
cdef Matrix vv = Matrix(n,1)
cdef Matrix indx = Matrix(n,1) #an output vector that records the row permutation effected by the partial pivoting
cdef Matrix d = Matrix(1,1, ones= True) #an output as +1 or -1 depending on whether the number of row interchanges was even or odd, respectively
cdef double TINY = 1.1e-16
for i from 0 <= i < n:
big = 0.0
for j from 0 <= j < n:
temp=fabs(a.getVal(i,j))
if (temp > big):
big=temp
if (big ==0.0):
raise Exception("ERROR! ludcmp: Singular matrix\n")
vv.setVal(i,0,1.0/big)

for j from 0 <= j < n:
for i from 0 <= i < j:
su = a.getVal(i,j)
for k from 0 <= k < i:
su -= a.getVal(i,k)*a.getVal(k,j)
a.setVal(i,j,su)

big=0.0
for i from j<= i< n:
su = a.getVal(i,j)
for k from 0 <= k < j:
su -= a.getVal(i,k)*a.getVal(k,j)
a.setVal(i, j, su)
dum=vv.getVal(i,0)*fabs(su )
if (dum >= big):
big=dum
imax=i

if (j != imax):
for k from 0 <= k < n:
dum = a.getVal(imax,k)
a.setVal(imax, k, a.getVal(j,k))
a.setVal(j,k, dum)
d.setVal(0, 0, -d.getVal(0,0))
vv.setVal(imax, 0, vv.getVal(j, 0))
indx.setVal(j, 0, imax)
if (a.getVal(j,j) == 0.0):
a.setVal(j,j, TINY)
if (j != (n-1)):
dum=1.0/a.getVal(j,j)
for i from (j+1)<= i <n:
a.setVal(i,j, a.getVal(i,j)*dum)
LU.append(<Matrix>a)
LU.append(<Matrix>indx)
LU.append(<Matrix>d)
return LU

矩阵.pxd

from libcpp.vector cimport vector
cdef class MatrixList:
cdef list inner
cdef void append(self, Matrix a)
cdef Matrix get(self, int i)

cdef class Matrix:
cdef vector[double] *matrix
cdef size_t _rows
cdef size_t _columns
cdef bint Identity
cdef bint ones

cpdef double getVal(self, size_t r, size_t c)
cpdef void setVal(self, size_t r, size_t c, double v)
cpdef Matrix transpose(self)
cdef void _IdentityMatrix(self)
cdef void _fillWithOnes(self)
cpdef Matrix Inv(self)
cdef Matrix lubksb(Matrix a, Matrix indx, Matrix b)
cdef MatrixList ludcmp(Matrix a)

如果您能帮助我们找到错误,我们将不胜感激。

示例:

import numpy
from matrix import Matrix
from numpy.linalg import inv
import timeit
import numpy as np
r=numpy.random.random((100, 100))
d=Matrix(r.shape[0],r.shape[1])
for i in range(d.rows):
for j in range(d.columns):
d.setVal(i,j,r[i,j])


start = timeit.default_timer()
x=d.Inv()
stop = timeit.default_timer()
print "LU decomposition:", stop - start

最佳答案

我发现我在 lubksb 函数中犯了一些非常小的错误,通过修复这些错误我得到了正确的答案。这是固定代码:

@cython.boundscheck(False)
@cython.wraparound(False)
cdef Matrix lubksb(Matrix a, Matrix indx, Matrix b):
cdef int n = a.rows
cdef int i, ip, j
cdef int ii = 0
cdef double su
for i from 0 <= i < n:
ip = <int>indx.getVal(i,0)
su = b.getVal(ip,0)
b.setVal(ip,0, b.getVal(i,0))
if (ii>=0):
for j from ii <= j <= (i-1):
su -= a.getVal(i,j) * b.getVal(j,0)
elif (su):
ii = i
b.setVal(i, 0, su)
for i from n >= i >= 0:
su = b.getVal(i,0)
for j from (i+1) <= j < n:
su -= a.getVal(i,j) * b.getVal(j,0)
if (a.getVal(i,i)==0.0):
a.setVal(i,i, 1.1e-16)
b.setVal(i, 0, su/a.getVal(i,i))
return b

关于python - 使用 LU 分解求逆矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48491962/

40 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com