gpt4 book ai didi

r - 如何在ggplot2中渐变填充注释形状

转载 作者:行者123 更新时间:2023-12-05 06:23:46 26 4
gpt4 key购买 nike

我有一个极坐标图,可以绘制一年中每小时的数据。我设法放入了四个注释矩形来表示季节。我希望这些矩形具有从透明到当前颜色的渐变填充。这是我当前的图表:current polar plot

我曾尝试专门为矩形添加渐变填充,但这与标记比例填充渐变相冲突。理想情况下,该图应如下所示: Ideal graph

到目前为止,这是我的代码:

#how to generate a dataset with hourly readings over a year and a half. 
library(lubridate)
NoOfHours <- as.numeric(ymd_hms("2019-6-1 00:00:00") - ymd_hms("2018-3-1 00:00:00"))*24
data1 <- as.data.frame(ymd_hms("2018-3-01 8:00:00") + hours(0:NoOfHours))
colnames(data1) <- 'date'
set.seed(10)
data1$level <- runif(nrow(data1), min = 0, max = 400)

library(readxl);library(lubridate); #loads the 'readxl' package.
#1.
Hours <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%H:%M:%S")
data1$hours <- Hours

Date <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%Y-%m-%d")
data1$date_date <- Date#output

month <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%m-%d")
data1$month<- month
#input the date here to select the start of the dataset, use the format: "yyyy-mm-dd". Then choose the end date by taking one full year of data. I.E. start = "2018-3-1", end = "2019-2-28"
start <- ceiling_date(ymd(data1$date_date[1]), "day", change_on_boundary = FALSE)
startdate <- as.Date(start) %m+% days(1)
enddate1 <- as.Date(startdate) %m+% years(1)
enddate<- as.Date(enddate1) %m-% days(1)

devicenumber <- "1"
Housename <- "level.tiff"
houseinfo <- c(devicenumber, Housename)

graphlimit <- 0 #need to define a limit for the graph
i<-200 #the initial lowest limit will always be 200
#this loop will now check for the highest levels of Radon and then graph a graphlimit that will encompass this maxima. This newly determined limit will allow different datasets to easily be automatically plotted with a range that is not too big or too small for the data.
if (max(data1$level) < (i+50)) {
graphlimit <- i
} else {
while (max(data1$level)>(i+50)) {
i<-i+200 }
if(max(data1$level) < (i+50)) {graphlimit <- i
}
}

library(openair)
yeardata <- selectByDate(data1, start = startdate, end = enddate, year = 2018:2019) #select for a defined set of years

library(ggplot2);library(extrafont)
graphlength <- graphlimit/(1350/1750)
innerlimit <- -(graphlength*(200/1750))
plotlimit <- graphlength+innerlimit #this sets the end limit of the outer plot ticks. This ratio was determined based on the largest dataset.

starttimedate <- ymd_hms(paste(startdate, "01:00:00"))
endtimedate <- ymd_hms(paste(enddate1, "01:00:00"))
#endtimedate2 <- ymd_hms(paste(floor_date(ymd(data1$date_date[1]), "year"), "01:00:00"))
NoOfhours <- as.numeric(ymd_hms(starttimedate) - ymd_hms("2018-01-01 00:00:00"))*24
NoOfHours <- (8760/12)*(month(startdate)-1)#as.numeric(ymd_hms(starttimedate) - ymd_hms(endtimedate2))*24 #need this to determine rotation. This will determine how many hours are between Jan 1-1 at 0:0:0 till the start of the dataset.
NoOfHoursall <- as.numeric(ymd_hms(endtimedate) - ymd_hms(starttimedate))*24
date_vals <- seq(from = ceiling_date(ymd(startdate), "month", change_on_boundary = FALSE), length.out = 12, by = "months")
finalcell <- length(yeardata$date)

plot <- ggplot(yeardata, aes(x=date, y=level, color = level)) +
annotate("rect", xmin = ((yeardata$date[1])), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))]), ymin = graphlimit, ymax = Inf, fill = "springgreen4", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))]), ymin = graphlimit, ymax = Inf, fill = "goldenrod2", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))]), ymin = graphlimit, ymax = Inf, fill = "orangered3", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))]), ymin = graphlimit, ymax = Inf, fill = "cornflowerblue", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))]), xmax = (yeardata$date[finalcell]), ymin = graphlimit, ymax = Inf, fill = "springgreen4", alpha = 0.15)+
geom_hline(yintercept = seq(0, graphlimit, by = 200), colour = "black", size = 0.75, alpha = 0.3)+
geom_hline(yintercept = seq(0, graphlimit, by = 50), colour = "black", size = 0.5, alpha = 0.1)+
annotate("segment",x = (yeardata$date[1]), xend = (yeardata$date[1]), y = 0, yend = graphlimit, colour = "black", size = 1, alpha = 0.5) +
#annotate("text",x = (max(yeardata$date)), y = innerlimit, colour = "black", size = 7, alpha = 1, label = devicenumber)+
scale_colour_gradientn(limits = c(0,1000), colours = c("grey","yellow","orangered1","red","red4","black"), values = c(0,0.1,0.2,0.5,0.8,1), breaks = c(0, 100, 200, 500, 800, 1000), oob = scales::squish, name = expression(atop("",atop(textstyle("Level"^2*"")))))+ #need oob = scales::squish to get values over 200 to be red.
geom_jitter(alpha = 0.2, size = 1) +
theme(text = element_text(family="Calibri"), axis.title=element_text(size=16,face="bold"), axis.text.x = element_blank(), axis.text.y = element_text(size = 12))+
labs(x = NULL, y = bquote('Level'))+
scale_y_continuous(breaks = seq(0, graphlimit, 200),
limits = c(innerlimit,plotlimit))+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[1])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[1])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[3])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[3])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[4])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[4])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[5])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[5])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[6])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[6])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[7])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[7])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[8])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[8])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[9])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[9])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[10])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[10])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[11])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[11])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[12])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[12])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "01-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JAN", angle = -15)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "02-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "FEB", angle = -45)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "03-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "MAR", angle = -74)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "04-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "APR", angle = -104)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "05-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "MAY", angle = -133)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "06-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JUN", angle = -163)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "07-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JUL", angle = 165)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "08-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "AUG", angle = 135)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "09-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "SEP", angle = 105)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "10-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "OCT", angle = 75)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "11-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "NOV", angle = 45)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "12-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "DEC", angle = 15)
plot
plot <- plot + coord_polar(start = ((2*NoOfhours/NoOfHoursall)*pi))+ #scale_x_continuous(breaks = as.POSIXct.Date(ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), origin))+ #need to have the number of radians to get my start position. If march 1st is the start date, then 60 days have past since Jan 1.
theme(legend.title = element_text(color = "black", size = 14, face = "bold"), panel.background = element_rect(fill = "white"), panel.grid = element_blank())
plot

任何帮助将不胜感激。

谢谢

最佳答案

好吧,经过仔细研究,我找到了一个解决方案。我找到了这篇文章:How can I apply a gradient fill to a geom_rect object in ggplot2?

据此,我修改了给出的答案以包括在我的下面代码中看到的内容。引用 @baptiste 的话:“您有两个选择:i) 沿 y 离散化矩形并将填充或 alpha 映射到该变量;ii) 对绘图进行后处理,例如通过支持原生渐变填充的 gridSVG。”

基本上,我创建了一个将透明度值映射到 n 个矩形的函数。为了让它与我想要的不同颜色一起工作,我必须为每个季节创建一个单独的数据框,然后在函数中将每个季节映射到它自己的一组具有特定颜色的离散矩形。这是具体的数据框和功能代码。

    spring <- data.frame(matrix(ncol = 0, nrow = 1))
spring$seasonstartdate <- ymd_hms((yeardata$date[1]))
spring$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))])
spring$colour <- "springgreen4"
summer <- data.frame(matrix(ncol = 0, nrow = 1))
summer$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))])
summer$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))])
summer$colour <- "goldenrod2"
fall <- data.frame(matrix(ncol = 0, nrow = 1))
fall$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))])
fall$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))])
fall$colour <- "orangered3"
winter <- data.frame(matrix(ncol = 0, nrow = 1))
winter$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))])
winter$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))])
winter$colour <- "orangered3"
spring1 <- data.frame(matrix(ncol = 0, nrow = 1))
spring1$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))])
spring1$seasonenddates <- ymd_hms(yeardata$date[finalcell])
spring1$colour <- "springgreen4"

ggplot_grad_rects <- function(n, ymin, ymax) {
y_steps <- seq(from = ymin, to = ymax, length.out = n + 1)
alpha_steps <- seq(from = 0, to = 0.2, length.out = n)
rect_grad <- data.frame(ymin = y_steps[-(n + 1)],
ymax = y_steps[-1],
alpha = alpha_steps)
rect_total <- merge(spring, rect_grad)
rect_total2 <- merge(summer, rect_grad)
rect_total3 <- merge(fall, rect_grad)
rect_total4 <- merge(winter, rect_grad)
rect_total5 <- merge(spring1, rect_grad)
ggplot(yeardata)+
geom_rect(data=rect_total,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="springgreen4") +
geom_rect(data=rect_total2,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="goldenrod2") +
geom_rect(data=rect_total3,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="orangered3") +
geom_rect(data=rect_total4,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="cornflowerblue") +
geom_rect(data=rect_total5,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="springgreen4") +
guides(alpha = FALSE)
}

事实证明,最终会的。这是创建的情节。 Successful plot

现在这是完整的代码,所以你们都可以看到这个过程。

library(lubridate)
NoOfHours <- as.numeric(ymd_hms("2019-6-1 00:00:00") - ymd_hms("2018-3-1 00:00:00"))*24
data1 <- as.data.frame(ymd_hms("2018-3-01 8:00:00") + hours(0:NoOfHours))
colnames(data1) <- 'date'
set.seed(10)
data1$level <- runif(nrow(data1), min = 0, max = 400)

library(readxl);library(lubridate); #loads the 'readxl' package.
#1.
Hours <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%H:%M:%S")
data1$hours <- Hours

Date <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%Y-%m-%d")
data1$date_date <- Date#output

month <- format(as.POSIXct(strptime(data1$date,"%Y-%m-%d %H:%M:%S",tz="")) ,format = "%m-%d")
data1$month<- month
#input the date here to select the start of the dataset, use the format: "yyyy-mm-dd". Then choose the end date by taking one full year of data. I.E. start = "2018-3-1", end = "2019-2-28"
start <- ceiling_date(ymd(data1$date_date[1]), "day", change_on_boundary = FALSE)
startdate <- as.Date(start) %m+% days(1)
enddate1 <- as.Date(startdate) %m+% years(1)
enddate<- as.Date(enddate1) %m-% days(1)

devicenumber <- "1"
Housename <- "level.tiff"
houseinfo <- c(devicenumber, Housename)

graphlimit <- 0 #need to define a limit for the graph
i<-200 #the initial lowest limit will always be 200
#this loop will now check for the highest levels of Radon and then graph a graphlimit that will encompass this maxima. This newly determined limit will allow different datasets to easily be automatically plotted with a range that is not too big or too small for the data.
if (max(data1$level) < (i+50)) {
graphlimit <- i
} else {
while (max(data1$level)>(i+50)) {
i<-i+200 }
if(max(data1$level) < (i+50)) {graphlimit <- i
}
}

library(openair)
yeardata <- selectByDate(data1, start = startdate, end = enddate, year = 2018:2019) #select for a defined set of years

library(ggplot2);library(extrafont)
graphlength <- graphlimit/(1350/1750)
innerlimit <- -(graphlength*(200/1750))
plotlimit <- graphlength+innerlimit #this sets the end limit of the outer plot ticks. This ratio was determined based on the largest dataset.

starttimedate <- ymd_hms(paste(startdate, "01:00:00"))
endtimedate <- ymd_hms(paste(enddate1, "01:00:00"))
#endtimedate2 <- ymd_hms(paste(floor_date(ymd(data1$date_date[1]), "year"), "01:00:00"))
NoOfhours <- as.numeric(ymd_hms(starttimedate) - ymd_hms("2018-01-01 00:00:00"))*24
NoOfHours <- (8760/12)*(month(startdate)-1)#as.numeric(ymd_hms(starttimedate) - ymd_hms(endtimedate2))*24 #need this to determine rotation. This will determine how many hours are between Jan 1-1 at 0:0:0 till the start of the dataset.
NoOfHoursall <- as.numeric(ymd_hms(endtimedate) - ymd_hms(starttimedate))*24
date_vals <- seq(from = ceiling_date(ymd(startdate), "month", change_on_boundary = FALSE), length.out = 12, by = "months")
finalcell <- length(yeardata$date)
#HERE IS THE SOLUTION
#I created a few dataframes to represent the seasons with their start and end times. From there I modified a previous solution to create a gradient geom_rect function.
spring <- data.frame(matrix(ncol = 0, nrow = 1))
spring$seasonstartdate <- ymd_hms((yeardata$date[1]))
spring$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))])
spring$colour <- "springgreen4"
summer <- data.frame(matrix(ncol = 0, nrow = 1))
summer$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))])
summer$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))])
summer$colour <- "goldenrod2"
fall <- data.frame(matrix(ncol = 0, nrow = 1))
fall$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))])
fall$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))])
fall$colour <- "orangered3"
winter <- data.frame(matrix(ncol = 0, nrow = 1))
winter$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))])
winter$seasonenddates <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))])
winter$colour <- "orangered3"
spring1 <- data.frame(matrix(ncol = 0, nrow = 1))
spring1$seasonstartdate <- ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))])
spring1$seasonenddates <- ymd_hms(yeardata$date[finalcell])
spring1$colour <- "springgreen4"

ggplot_grad_rects <- function(n, ymin, ymax) {
y_steps <- seq(from = ymin, to = ymax, length.out = n + 1)
alpha_steps <- seq(from = 0, to = 0.2, length.out = n)
rect_grad <- data.frame(ymin = y_steps[-(n + 1)],
ymax = y_steps[-1],
alpha = alpha_steps)
rect_total <- merge(spring, rect_grad)
rect_total2 <- merge(summer, rect_grad)
rect_total3 <- merge(fall, rect_grad)
rect_total4 <- merge(winter, rect_grad)
rect_total5 <- merge(spring1, rect_grad)
ggplot(yeardata)+
geom_rect(data=rect_total,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="springgreen4") +
geom_rect(data=rect_total2,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="goldenrod2") +
geom_rect(data=rect_total3,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="orangered3") +
geom_rect(data=rect_total4,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="cornflowerblue") +
geom_rect(data=rect_total5,
aes(xmin=ymd_hms(seasonstartdate), xmax=ymd_hms(seasonenddates),
ymin=ymin, ymax=ymax,
alpha=alpha), fill="springgreen4") +
guides(alpha = FALSE)
}



plot <- ggplot_grad_rects(100, graphlimit, graphlength) +
annotate("rect", xmin = ((yeardata$date[1])), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))]), ymin = graphlimit, ymax = Inf, fill = "springgreen4", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-6-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))]), ymin = graphlimit, ymax = Inf, fill = "goldenrod2", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-9-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))]), ymin = graphlimit, ymax = Inf, fill = "orangered3", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2018-12-1")))]), xmax = (yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))]), ymin = graphlimit, ymax = Inf, fill = "cornflowerblue", alpha = 0.15)+
annotate("rect", xmin = (yeardata$date[min(which(yeardata$date_date == ymd("2019-3-1")))]), xmax = (yeardata$date[finalcell]), ymin = graphlimit, ymax = Inf, fill = "springgreen4", alpha = 0.15)+
geom_hline(yintercept = seq(0, graphlimit, by = 200), colour = "black", size = 0.75, alpha = 0.3)+
geom_hline(yintercept = seq(0, graphlimit, by = 50), colour = "black", size = 0.5, alpha = 0.1)+
annotate("segment",x = (yeardata$date[1]), xend = (yeardata$date[1]), y = 0, yend = graphlimit, colour = "black", size = 1, alpha = 0.5) +
#annotate("text",x = (max(yeardata$date)), y = innerlimit, colour = "black", size = 7, alpha = 1, label = devicenumber)+
scale_colour_gradientn(limits = c(0,1000), colours = c("grey","yellow","orangered1","red","red4","black"), values = c(0,0.1,0.2,0.5,0.8,1), breaks = c(0, 100, 200, 500, 800, 1000), oob = scales::squish, name = expression(atop("",atop(textstyle("Level"^2*"")))))+ #need oob = scales::squish to get values over 200 to be red.
geom_jitter(alpha = 0.2, size = 1) +
theme(text = element_text(family="Calibri"), axis.title=element_text(size=16,face="bold"), axis.text.x = element_blank(), axis.text.y = element_text(size = 12))+
labs(x = NULL, y = bquote('Level'))+
scale_y_continuous(breaks = seq(0, graphlimit, 200),
limits = c(innerlimit,plotlimit))+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[1])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[1])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[3])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[3])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[4])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[4])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[5])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[5])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[6])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[6])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[7])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[7])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[8])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[8])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[9])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[9])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[10])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[10])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[11])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[11])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("segment", x = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[12])))]), xend = (yeardata$date[min(which(yeardata$date_date == ymd(date_vals[12])))]), y = graphlimit, yend = plotlimit, colour = "black", size = 2)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "01-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JAN", angle = -15)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "02-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "FEB", angle = -45)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "03-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "MAR", angle = -74)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "04-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "APR", angle = -104)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "05-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "MAY", angle = -133)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "06-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JUN", angle = -163)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "07-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "JUL", angle = 165)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "08-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "AUG", angle = 135)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "09-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "SEP", angle = 105)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "10-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "OCT", angle = 75)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "11-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "NOV", angle = 45)+
annotate("text", x = (yeardata$date[min(which(yeardata$month == "12-16"))]), y = ((graphlimit+plotlimit)/2), colour = "black", size = 9, family="Calibri", label = "DEC", angle = 15)
plot
plot <- plot + coord_polar(start = ((2*NoOfhours/NoOfHoursall)*pi))+ #scale_x_continuous(breaks = as.POSIXct.Date(ymd_hms(yeardata$date[min(which(yeardata$date_date == ymd(date_vals[2])))]), origin))+
theme(legend.title = element_text(color = "black", size = 14, face = "bold"), panel.background = element_rect(fill = "white"), panel.grid = element_blank())
plot

感谢并享受

关于r - 如何在ggplot2中渐变填充注释形状,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58122423/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com