gpt4 book ai didi

python - 多个线程访问 GPU 上的同一模型进行推理

转载 作者:行者123 更新时间:2023-12-05 06:16:28 25 4
gpt4 key购买 nike

我有一个加载到 GPU 上的 cnn 模型,对于每张图像,必须创建并分离一个新线程以在此图像上运行模型。这可能吗?如果可以,安全吗?

最佳答案

是的,你绝对可以。它有两个方面。如果要并行运行每个模型,则必须在多个 GPU 中加载相同的模型。如果您不需要它(只需要线程部分),那么您可以加载模型并使用 concurrent.futures.ThreadPoolExecutor()。在每次调用中,您都可以传递一张图片。

我用暗网框架演示了一个例子。

我将模型加载到两个独立的 GPU 中(为了并行操作,您也可以避免这种情况),每次收到请求时,我都使用 ThreadPoolExecutor 将图像传递给处理函数。

from darknet import *
import concurrent.futures
import time

# you can avoid this part if you don't need multiple GPUs
set_gpu(0) # running on GPU 0
net1 = load_net(b"cfg/yolov3-lp_vehicles.cfg", b"backup/yolov3-lp_vehicles.backup", 0)
meta1 = load_meta(b"data/lp_vehicles.data")

set_gpu(1) # running on GPU 1
net2 = load_net(b"cfg/yolov3-lp_vehicles.cfg", b"backup/yolov3-lp_vehicles.backup", 0)
meta2 = load_meta(b"data/lp_vehicles.data")


def f(x):
if x[0] == 0: # gpu 0
return detect_np_lp(net1, meta1, x[1])
else:
return detect_np_lp(net2, meta2, x[1])



def func2(): # with threading
a1 = cv2.imread("lp_tester/bug1.jpg")
a2 = cv2.imread("lp_tester/bug2.jpg")
nums = [(0, a1), (1, a2)] # the first element in tuple denotes GPU ID
with concurrent.futures.ThreadPoolExecutor() as executor:
r_m = [val for val in executor.map(f, nums)]
print('out f2')
#return r_m

t1 = time.time()
func2()
t2 = time.time()
print(t2-t1)

关于python - 多个线程访问 GPU 上的同一模型进行推理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62111922/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com