- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
建立于 this post ,我实现了自定义模式公式,但发现此函数的性能存在问题。本质上,当我进入这个聚合时,我的集群只使用我的一个线程,这对性能来说不是很好。我正在对 16k 行的 150 多个属性(主要是分类数据)进行计算,我认为我可以将它们拆分成单独的线程/进程,然后再一起放回到一个数据框中。请注意,此聚合必须在两列上,因此我可能会因为无法使用单个列作为索引而获得更差的性能。
有没有办法将 dask future 或并行处理纳入聚合计算?
import dask.dataframe as dd
from dask.distributed import Client
from pandas import DataFrame
def chunk(s):
return s.value_counts()
def agg(s):
s = s._selected_obj
return s.groupby(level=list(range(s.index.nlevels))).sum()
def finalize(s):
# s is a multi-index series of the form (group, value): count. First
# manually group on the group part of the index. The lambda will receive a
# sub-series with multi index. Next, drop the group part from the index.
# Finally, determine the index with the maximum value, i.e., the mode.
level = list(range(s.index.nlevels - 1))
return (
s.groupby(level=level)
.apply(lambda s: s.reset_index(level=level, drop=True).argmax())
)
def main() -> DataFrame:
client = Client('scheduler:8786')
ddf = dd.read_csv('/sample/data.csv')
custom_mode = dd.Aggregation('custom mode', chunk, agg, finalize)
result = ddf.groupby(['a','b']).agg(custom_mode).compute()
return result
旁注,我正在使用 Docker 来启动我的调度程序和使用 daskdev/dask (2.18.1) docker 镜像的工作程序。
最佳答案
最后,我使用 futures 从本质上并行化了每一列的聚合。由于我有这么多列,将每个聚合传递给它自己的工作线程为我节省了大量时间。感谢 David 的评论以及 the article on parallel workloads from the dask documentation !
from dask.distributed import Client
from pandas import DataFrame
def chunk(s):
return s.value_counts()
def agg(s):
s = s._selected_obj
return s.groupby(level=list(range(s.index.nlevels))).sum()
def finalize(s):
level = list(range(s.index.nlevels - 1))
return (
s.groupby(level=level)
.apply(lambda s: s.reset_index(level=level, drop=True).idxmax())
)
def delayed_mode(ddf, groupby, col, custom_agg):
return ddf.groupby(groupby).agg({col: custom_agg}).compute()
def main() -> DataFrame:
client = Client('scheduler:8786')
ddf = dd.read_csv('/sample/data.csv')
custom_mode = dd.Aggregation('custom mode', chunk, agg, finalize)
futures = []
for col in multiple_trimmed.columns:
future = client.submit(delayed_mode, ddf, ["a", "b"], col, custom_mode_dask)
futures.append(future)
ddfs = client.gather(futures)
result = pd.concat(ddfs, axis=1)
return result
关于python - 并行化 Dask 聚合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62352617/
有没有办法同时运行 2 个不同的代码块。我一直在研究 R 中的并行包,它们似乎都基于在循环中运行相同的函数。我正在寻找一种同时运行不同函数的方法(循环的 1 次迭代)。例如,我想在某个数据对象上创建一
无论如何增加 Parallel.For 启动后的循环次数?示例如下: var start = 0; var end = 5; Parallel.For(start, end, i => { C
我是 Golang 的新手,正在尝试了解并发和并行。我阅读了下面提到的关于并发和并行的文章。我执行了相同的程序。但没有得到相同的(混合字母和字符)输出。首先获取所有字母,然后获取字符。似乎并发不工作,
我正在寻找同时迭代 R 中两个或多个字符向量/列表的方法,例如。有没有办法做这样的事情: foo <- c('a','c','d') bar <- c('aa','cc','dd') for(i in
我对 Raku 很陌生,我对函数式方法有疑问,尤其是 reduce。 我最初有这样的方法: sub standardab{ my $mittel = mittel(@_); my $foo =
我最近花了很多时间来学习实时音频处理的细节,我发现的大多数库/工具都是c / c++代码或脚本/图形语言的形式,并在其中编译了c / c++代码。引擎盖。 使用基于回调的API,与GUI或App中的其
我正在使用 JMeter 进行图像负载测试。我有一个图像名称数组并遍历该数组,我通过 HTTP 请求获取所有图像。 -> loop_over_image - for loop controller
我整个晚上都在困惑这个问题...... makeflags = ['--prefix=/usr','--libdir=/usr/lib'] rootdir='/tmp/project' ps = se
我正在尝试提高计算图像平均值的方法的性能。 为此,我使用了两个 For 语句来迭代所有图像,因此我尝试使用一个 Parallel For 来改进它,但结果并不相同。 我做错了吗?或者是什么导致了差异?
假设您有一个并行 for 循环实现,例如ConcRT parallel_for,将所有工作放在一个 for 循环体内总是最好的吗? 举个例子: for(size_t i = 0; i < size()
我想并行运行一部分代码。目前我正在使用 Parallel.For 如何让10、20或40个线程同时运行 我当前的代码是: Parallel.For(1, total, (ii) =>
我使用 PAY API 进行了 PayPal 自适应并行支付,其中无论用户(买家)购买什么,都假设用户购买了总计 100 美元的商品。在我的自适应并行支付中,有 2 个接收方:Receiver1 和
我正在考虑让玩家加入游戏的高效算法。由于会有大量玩家,因此算法应该是异步的(即可扩展到集群中任意数量的机器)。有细节:想象有一个无向图(每个节点都是一个玩家)。玩家之间的每条边意味着玩家可以参加同一场
我有一个全局变量 volatile i = 0; 和两个线程。每个都执行以下操作: i++; System.out.print(i); 我收到以下组合。 12、21 和 22。 我理解为什么我没有得到
我有以下称为 pgain 的方法,它调用我试图并行化的方法 dist: /***************************************************************
我有一个 ruby 脚本读取一个巨大的表(约 2000 万行),进行一些处理并将其提供给 Solr 用于索引目的。这一直是我们流程中的一大瓶颈。我打算在这里加快速度,我想实现某种并行性。我对 Ru
我正在研究 Golang 并遇到一个问题,我已经研究了几天,我似乎无法理解 go routines 的概念以及它们的使用方式。 基本上我是在尝试生成数百万条随机记录。我有生成随机数据的函数,并将创建一
我希望 for 循环使用 go 例程并行。我尝试使用 channel ,但没有用。我的主要问题是,我想在继续之前等待所有迭代完成。这就是为什么在它不起作用之前简单地编写 go 的原因。我尝试使用 ch
我正在使用 import Control.Concurrent.ParallelIO.Global main = parallel_ (map processI [1..(sdNumber runPa
我正在尝试通过 makePSOCKcluster 连接到另一台计算机: library(parallel) cl ... doTryCatch -> recvData -> makeSOCKm
我是一名优秀的程序员,十分优秀!