gpt4 book ai didi

python - 枚举数据加载器时出现 KeyError - 为什么?

转载 作者:行者123 更新时间:2023-12-05 06:12:47 26 4
gpt4 key购买 nike

我正在编写一个二元分类模型,该模型由 40 名参与者的音频文件组成,并根据他们是否患有语言障碍对他们进行分类。音频文件被分成 5 秒的片段,为了避免主题偏差,我拆分了训练/测试/验证集,这样一个主题只出现在一组中(即参与者 ID02 没有同时出现在训练和测试集中) .当我尝试在下面的代码中枚举 DataLoader validLoader 时出现以下错误,我不完全确定为什么会出现此错误。有人有什么建议吗?

KeyError                                  Traceback (most recent call last)
<ipython-input-69-55be99283cf7> in <module>()
----> 1 for i, data in enumerate(valid_loader, 0):
2 images, labels = data
3 print("Batch", i, "size:", len(images))

3 frames
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in __next__(self)
361
362 def __next__(self):
--> 363 data = self._next_data()
364 self._num_yielded += 1
365 if self._dataset_kind == _DatasetKind.Iterable and \

/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _next_data(self)
987 else:
988 del self._task_info[idx]
--> 989 return self._process_data(data)
990
991 def _try_put_index(self):

/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _process_data(self, data)
1012 self._try_put_index()
1013 if isinstance(data, ExceptionWrapper):
-> 1014 data.reraise()
1015 return data
1016

/usr/local/lib/python3.6/dist-packages/torch/_utils.py in reraise(self)
393 # (https://bugs.python.org/issue2651), so we work around it.
394 msg = KeyErrorMessage(msg)
--> 395 raise self.exc_type(msg)

KeyError: Caught KeyError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop
data = fetcher.fetch(index)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "<ipython-input-44-245be0a1e978>", line 19, in __getitem__
x = Image.open(self.df['path'][index])
File "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py", line 871, in __getitem__
result = self.index.get_value(self, key)
File "/usr/local/lib/python3.6/dist-packages/pandas/core/indexes/base.py", line 4405, in get_value
return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None))
File "pandas/_libs/index.pyx", line 80, in pandas._libs.index.IndexEngine.get_value
File "pandas/_libs/index.pyx", line 90, in pandas._libs.index.IndexEngine.get_value
File "pandas/_libs/index.pyx", line 138, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 998, in pandas._libs.hashtable.Int64HashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1005, in pandas._libs.hashtable.Int64HashTable.get_item
KeyError: 36

谁能告诉我为什么会这样?

from google.colab import drive
drive.mount('/content/drive')

import torch
import torchvision
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import utils
from torch.utils.data import Dataset

from sklearn.metrics import confusion_matrix
from skimage import io, transform, data
from skimage.color import rgb2gray

import matplotlib.pyplot as plt
from tqdm import tqdm
from PIL import Image
import pandas as pd
import numpy as np
import csv
import os
import math
import cv2

root_dir = "/content/drive/My Drive/Read_Text/5_Second_Segments/"
class_names = [
"Parkinsons_Disease",
"Healthy_Control"
]

def get_meta(root_dir, dirs):
""" Fetches the meta data for all the images and assigns labels.
"""
paths, classes = [], []
for i, dir_ in enumerate(dirs):
for entry in os.scandir(root_dir + dir_):
if (entry.is_file()):
paths.append(entry.path)
classes.append(i)

return paths, classes


paths, classes = get_meta(root_dir, class_names)

data = {
'path': paths,
'class': classes
}

data_df = pd.DataFrame(data, columns=['path', 'class'])
data_df = data_df.sample(frac=1).reset_index(drop=True) # Shuffles the data

from pandas import option_context

print("Found", len(data_df), "images.")

with option_context('display.max_colwidth', 400):
display(data_df.head(100))

class Audio(Dataset):

def __init__(self, df, transform=None):
"""
Args:
image_dir (string): Directory with all the images
df (DataFrame object): Dataframe containing the images, paths and classes
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.df = df
self.transform = transform

def __len__(self):
return len(self.df)

def __getitem__(self, index):
# Load image from path and get label
x = Image.open(self.df['path'][index])
try:
x = x.convert('RGB') # To deal with some grayscale images in the data
except:
pass
y = torch.tensor(int(self.df['class'][index]))

if self.transform:
x = self.transform(x)

return x, y

def compute_img_mean_std(image_paths):
"""
Author: @xinruizhuang. Computing the mean and std of three channel on the whole dataset,
first we should normalize the image from 0-255 to 0-1
"""

img_h, img_w = 224, 224
imgs = []
means, stdevs = [], []

for i in tqdm(range(len(image_paths))):
img = cv2.imread(image_paths[i])
img = cv2.resize(img, (img_h, img_w))
imgs.append(img)

imgs = np.stack(imgs, axis=3)
print(imgs.shape)

imgs = imgs.astype(np.float32) / 255.

for i in range(3):
pixels = imgs[:, :, i, :].ravel() # resize to one row
means.append(np.mean(pixels))
stdevs.append(np.std(pixels))

means.reverse() # BGR --> RGB
stdevs.reverse()

print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
return means, stdevs

norm_mean, norm_std = compute_img_mean_std(paths)

data_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])

unique_users = data_df['path'].str[-20:-16].unique()
train_users, test_users = np.split(np.random.permutation(unique_users), [int(0.8*len(unique_users))])
df_train = data_df[data_df['path'].str[-20:-16].isin(train_users)]
test_data_df = data_df[data_df['path'].str[-20:-16].isin(test_users)]

train_unique_users = df_train['path'].str[-20:-16].unique()
train_users, validate_users = np.split(np.random.permutation(train_unique_users), [int(0.875*len(train_unique_users))])
train_data_df = df_train[df_train['path'].str[-20:-16].isin(train_users)]
valid_data_df = df_train[df_train['path'].str[-20:-16].isin(validate_users)]

ins_dataset_train = Audio(
df=train_data_df,
transform=data_transform,
)

ins_dataset_valid = Audio(
df=valid_data_df,
transform=data_transform,
)

ins_dataset_test = Audio(
df=test_data_df,
transform=data_transform,
)

train_loader = torch.utils.data.DataLoader(
ins_dataset_train,
batch_size=8,
shuffle=True,
num_workers=2
)

test_loader = torch.utils.data.DataLoader(
ins_dataset_test,
batch_size=16,
shuffle=True,
num_workers=2
)

valid_loader = torch.utils.data.DataLoader(
ins_dataset_valid,
batch_size=16,
shuffle=True,
num_workers=2
)

//(This is where the error is occurring.)
for i, data in enumerate(valid_loader, 0):
images, labels = data
print("Batch", i, "size:", len(images))

最佳答案

正如@Abhik-Banerjee 所说的那样,在数据加载器中使用它们之前重置数据帧的索引对我来说是个窍门:

train, val = train.reset_index(drop=True), val.reset_index(drop=True)

参见 https://discuss.pytorch.org/t/keyerror-when-enumerating-over-dataloader/54210/20进行非常有帮助的讨论和https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html了解有关函数参数的更多信息。

关于python - 枚举数据加载器时出现 KeyError - 为什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63545434/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com