gpt4 book ai didi

pandas - 如何使用 pandas.Grouper 对整数进行区间分组?

转载 作者:行者123 更新时间:2023-12-05 06:11:23 24 4
gpt4 key购买 nike

难道 pandas.Grouper 只被认为是用于日期?或者它也可以用于整数吗?

我想将 pandas.Grouperpandas.pivot_table 结合使用。以下是有关如何将 pandas.Grouper 用于包含 dates 的列的示例:

import pandas
import numpy
from datetime import datetime

date_data_frame = pandas.DataFrame(
{
"date": [
datetime(2019, 9, 1, 13, 0),
datetime(2019, 9, 1, 13, 5),
datetime(2019, 10, 1, 20, 0),
datetime(2019, 10, 3, 10, 0),
datetime(2019, 12, 2, 12, 0),
datetime(2019, 9, 2, 14, 0),
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)

grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="date", freq="M")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)

print(grouped_pivot_table)

现在让我们假设我没有日期,但有 1 到 100 之间的整数,我想以 10(1-10、11-20,...)为间隔对它们进行分组。如何使用 pandas.Grouper 指定分组的间隔?

我试过 freq="10"但没有用:

import pandas
import numpy
from datetime import datetime

date_data_frame = pandas.DataFrame(
{
"param": [
1,
5,
10,
15,
22,
33,
],
"name": "Maria Maria Maria Maria Jane Carlos".split(),
"value": [25, 9, 4, 3, 2, 8],
}
)

grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index=[pandas.Grouper(key="param", freq="10")], #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)

print(grouped_pivot_table)

如果 pandas.Grouper 无法做到这一点,我应该使用什么来对数据透视表的参数索引进行分组?

最佳答案

可能的想法是使用整数除法,我认为 Grouper 仅适用于日期时间:

grouped_pivot_table = pandas.pivot_table(
date_data_frame,
index= (date_data_frame["param"] - 1) // 10, #grouped entries to show as row headers
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)

print(grouped_pivot_table)
name Carlos Jane Maria
param
0 NaN NaN 34.0
1 NaN NaN 7.0
2 NaN 2.0 NaN
3 8.0 NaN NaN

或者使用cut从右侧关闭间隔:

bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]

grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)

print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 38.0
11-20 NaN NaN 3.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN

或不(right=False参数):

bins = range(0, date_data_frame["param"].max() // 10 * 10 + 20, 10)
labels = ['{}-{}'.format(i + 1, j) for i, j in zip(bins[:-1], bins[1:])]

grouped_pivot_table = pandas.pivot_table(
date_data_frame,
#grouped entries to show as row headers
index= pd.cut(date_data_frame["param"], bins=bins, labels=labels, right=False),
columns='name', #entries to show as column headers
values='value', #entries to aggregate and show as cells
aggfunc=numpy.sum, #aggregation function(s)
)

print(grouped_pivot_table)
name Carlos Jane Maria
param
1-10 NaN NaN 34.0
11-20 NaN NaN 7.0
21-30 NaN 2.0 NaN
31-40 8.0 NaN NaN

关于pandas - 如何使用 pandas.Grouper 对整数进行区间分组?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64008235/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com