- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试将具有多个网络的 pytorch 模型转换为 ONNX,但遇到了一些问题。
git 存储库:https://github.com/InterDigitalInc/HRFAE
训练师类:
class Trainer(nn.Module):
def __init__(self, config):
super(Trainer, self).__init__()
# Load Hyperparameters
self.config = config
# Networks
self.enc = Encoder()
self.dec = Decoder()
self.mlp_style = Mod_Net()
self.dis = Dis_PatchGAN()
...
以下是经过训练的模型处理图像的方式:
def gen_encode(self, x_a, age_a, age_b=0, training=False, target_age=0):
if target_age:
self.target_age = target_age
age_modif = self.target_age*torch.ones(age_a.size()).type_as(age_a)
else:
age_modif = self.random_age(age_a, diff_val=25)
# Generate modified image
self.content_code_a, skip_1, skip_2 = self.enc(x_a)
style_params_a = self.mlp_style(age_a)
style_params_b = self.mlp_style(age_modif)
x_a_recon = self.dec(self.content_code_a, style_params_a, skip_1, skip_2)
x_a_modif = self.dec(self.content_code_a, style_params_b, skip_1, skip_2)
return x_a_recon, x_a_modif, age_modif
下面是我如何转换为 onnx:
enc = Encoder()
dec = Decoder()
mlp = Mod_Net()
layers = [enc, mlp, dec]
model = torch.nn.Sequential(*layers)
# here is my confusion: how do I specify the inputs of each layer??
# E.g. one of the outputs of 'enc' layer should be input of 'mlp' layer,
# or the outputs of 'enc' layer should be part of inputs of 'dec' layer...
params = torch.load('./logs/001/checkpoint')
model[0].load_state_dict(params['enc_state_dict'])
model[1].load_state_dict(params['mlp_style_state_dict'])
model[2].load_state_dict(params['dec_state_dict'])
torch.onnx.export(model, torch.randn([1, 3, 1024, 1024]), 'trained_hrfae.onnx', do_constant_folding=True)
也许转换部分代码的方式有误??谁能帮忙,非常感谢!
#20210629-11:52GMT 编辑:
我发现使用 torch.nn.Sequential 有限制。 Sequential 中前一层的输出应该与后一层的输入一致。所以我的代码根本不应该工作,因为“enc”层的输出与“mlp”层的输入不一致。
谁能帮忙把这种pytorch模型转换成onnx?非常感谢,再次:)
最佳答案
经过研究和尝试,我找到了一个可能正确的方法:
将每个网络(编码器、Mod_Net、解码器)转换为 onnx 模型,并在后面的逻辑过程或任何进一步的过程中处理它们的输入/输出(例如转换为 tflite 模型)。
我正在尝试使用此方法移植到 Android。
#Edit 20210705-03:52GMT#
另一种方法可能更好:写一个新的网络结合三个网络。我已经证明输出与原始 pytorch 模型相同。
class HRFAE(nn.Module):
def __init__(self):
super(HRFAE, self).__init__()
self.enc = Encoder()
self.mlp_style = Mod_Net()
self.dec = Decoder()
def forward(self, x, age_modif):
content_code_a, skip_1, skip_2 = self.enc(x)
style_params_b = self.mlp_style(age_modif)
x_a_modif = self.dec(content_code_a, style_params_b, skip_1, skip_2)
return x_a_modif
然后使用以下转换:
net = HRFAE()
params = torch.load('./logs/002/checkpoint')
net.enc.load_state_dict(params['enc_state_dict'])
net.mlp_style.load_state_dict(params['mlp_style_state_dict'])
net.dec.load_state_dict(params['dec_state_dict'])
net.eval()
torch.onnx.export(net, (torch.randn([1, 3, 512, 512]), torch.randn([1]).type(torch.long)), 'test_hrfae.onnx')
这应该是答案。
关于deep-learning - 将具有多个网络的 pytorch 模型转换为 onnx,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68177899/
你能告诉我,下面两种 scss 样式之间的区别吗?我对此没有清楚的认识。 :host { display: inline-block; /deep/ { span { co
/deep/和::ng-deep 这些在 DOM 模式下也被弃用了,我想知道将来是否会有/deep/和::ng-deep 的替代方案,或者我们应该开始使用其他方式? ::ng-deep .result
长期以来,我一直在寻找这个问题的明确答案。是否有可靠且推荐的替代策略来执行此操作?此问题的不正确答案包括: Just favor ::ng-deep for now 和 if component au
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 2 年前。 Improve this qu
我正在阅读 DQN 网络上的 deepmind 自然论文。 我几乎得到了关于它的一切,除了一个。我不知道为什么以前没有人问过这个问题,但无论如何对我来说似乎有点奇怪。 我的问题: DQN 的输入是一个
我在我的新 Jetpack Compose 应用程序中设置了一个底栏,其中包含 2 个目的地。我尝试遵循 Google 的示例。 例如它看起来像这样: @Composable fun MyBottom
所以,我读过 here在 Vue.js 中,您可以在选择器中使用 /deep/ 或 >>> 来创建适用于子组件内部元素的样式规则。但是,尝试在我的样式中使用它,无论是在 SCSS 中还是在普通的旧 C
我正在尝试实现DQN和DDQN(两者都有经验回复)来解决OpenAI AI-Gym Cartpole环境。这两种方法有时都能学习并解决这个问题,但并非总是如此。 我的网络只是一个前馈网络(我尝试过使用
scss中下面两个有什么区别,在片段中给出一些例子。 :host::ng-deep .content-body { ... } 和 .content-body :host::ng-deep { ...
在我们的元素中,我们使用了 Angular Material 进行开发。我们已经覆盖了 使用::ng-deep 的 Angular Material 样式自定义 CSS 属性。 在使用::ng-dee
我尝试熟悉 Q-learning 和深度神经网络,目前尝试实现 Playing Atari with Deep Reinforcement Learning . 为了测试我的实现并尝试使用它,我坚持尝
我开始在 Vue 3 中收到以下警告 ::v-deep用法。 ::v-deep usage as a combinator has been deprecated. Use ::v-deep() in
谁能给我解释一下 df2 = df1 df2 = df1.copy() df3 = df1.copy(deep=False) 我已经尝试了所有选项并执行了以下操作: df1 = pd.DataFram
我对 PyTorch 比较陌生,但我对 Keras 和 TensorFlow 有很好的经验。我关注了这个article在我自己的训练脚本中使用 DDP。然而,出于某种原因,我总是最终得到: proce
我正在尝试为 Conv2D 和 transposeconv2D 层编写 dropconnect 代码。按照 https://pytorchnlp.readthedocs.io/en/latest/_m
我正在做一个 mask 检测项目,我使用 ultralytics/yolov5 训练了我的模型。我将训练好的模型保存为一个 onnx 文件,你可以在这里找到模型文件 model.onnx .现在我希望
我正在研究一种强化算法,我对此很陌生,并试图掌握一些东西。 Player1Env 查看 7x6 Connect4 游戏网格。我按如下方式初始化类: def __init__(self): su
我有几个嵌入矩阵,假设 E1 矩阵用于 Glove,E2 用于 Word2vec。 我想构建一个简单的情感分类器,它采用该嵌入的可训练加权和。 例如,对于单词“dog”,我想在学习 x 和 y 时得到
我正在使用它处理深度学习和医学图像分类。我使用大脑 MRI 数据并将它们转换为 jpg。然后使用 VGG16 进行训练。当我检查损失、准确性、验证损失和验证准确性时,我看到了下图。 accuracy
我设计的网络包括转置卷积层。(pytorch 中的 ConvTranspose2d) 我想获得网络的感受野大小。 感受野的概念是否也适用于转置卷积层? 如果是,那我怎样才能得到它? 最佳答案 您可以使
我是一名优秀的程序员,十分优秀!