- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个项目需要为 1) 使用 PySpark 预处理图像、2) <设置大数据架构 (AWS S3 + SageMaker) 的概念验证strong>执行 PCA 和 3) 训练一些机器或深度学习模型。我的问题是了解如何使用 PySpark 操作图像数据并且无法在线提供满意的答案。
所以我认为任何答案/提示都会引起像我这样的广大初学者的兴趣。类似的帖子仍未得到答复 here .
如下所示,您可以找到我到目前为止尝试过的内容(在 Jupyter Notebook 上使用 Python 3.8):
from pyspark.sql import SparkSession
import sagemaker_pyspark
import botocore.session
session = botocore.session.get_session()
credentials = session.get_credentials()
conf = (SparkConf()**
.set("spark.driver.extraClassPath", ":".join(sagemaker_pyspark.classpath_jars())))
spark = (
SparkSession
.builder
.config(conf=conf) \
.config('fs.s3a.access.key', credentials.access_key)
.config('fs.s3a.secret.key', credentials.secret_key)
.appName("test")
.getOrCreate()
s3_url = "s3a://<MY_BUCKET>/dataset/*"
df = spark.read.format("image").load(s3_url)
print((df.count(), len(df.columns)))
print(df.printSchema())
df.select('image.nChannels', "image.width", "image.height", "image.data").show(truncate=True)
输出:
(60, 1)
root
|-- image: struct (nullable = true)
| |-- origin: string (nullable = true)
| |-- height: integer (nullable = true)
| |-- width: integer (nullable = true)
| |-- nChannels: integer (nullable = true)
| |-- mode: integer (nullable = true)
| |-- data: binary (nullable = true)
None
+---------+-----+------+--------------------+
|nChannels|width|height| data|
+---------+-----+------+--------------------+
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
| 3| 100| 100|[FF FF FF FF FF F...|
+---------+-----+------+--------------------+
only showing top 20 rows
所以我在我的 df.data 中以字节形式获取图像。
import numpy as np
import io
from PIL import Image
from pyspark.sql.functions import pandas_udf, PandasUDFType
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.applications.resnet50 import preprocess_input
@pandas_udf('array<float>', 'pyspark.sql.dataframe.DataFrame')
def preprocess(content):
"""
Preprocesses raw image bytes for prediction.
"""
img = Image.open(io.BytesIO(content))
arr = img_to_array(img)
return arr.flatten()
df_transformed = df.select(preprocess("image.data"))
type(df_transformed)
df_transformed.printSchema()
df_transformed.show()
输出:
root
|-- preprocess(image.data): array (nullable = true)
| |-- element: float (containsNull = true)
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-24-e3999c55086a> in <module>
20 type(df_transformed)
21 df_transformed.printSchema()
---> 22 df_transformed.show()
~/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
376 """
377 if isinstance(truncate, bool) and truncate:
--> 378 print(self._jdf.showString(n, 20, vertical))
379 else:
380 print(self._jdf.showString(n, int(truncate), vertical))
~/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
~/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
~/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o433.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 12.0 failed 1 times, most recent failure: Lost task 0.0 in stage 12.0 (TID 16, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 372, in main
process()
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 367, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 283, in dump_stream
for series in iterator:
File "<string>", line 1, in <lambda>
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 96, in <lambda>
return lambda *a: (verify_result_length(*a), arrow_return_type)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 87, in verify_result_length
result = f(*a)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py", line 99, in wrapper
return f(*args, **kwargs)
File "<ipython-input-24-e3999c55086a>", line 14, in preprocess
TypeError: a bytes-like object is required, not 'Series'
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:172)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:122)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec$$anon$2.<init>(ArrowEvalPythonExec.scala:98)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec.evaluate(ArrowEvalPythonExec.scala:96)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:127)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:89)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3384)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2545)
at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3365)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3364)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2545)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2759)
at org.apache.spark.sql.Dataset.getRows(Dataset.scala:255)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:292)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 372, in main
process()
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 367, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/serializers.py", line 283, in dump_stream
for series in iterator:
File "<string>", line 1, in <lambda>
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 96, in <lambda>
return lambda *a: (verify_result_length(*a), arrow_return_type)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 87, in verify_result_length
result = f(*a)
File "/home/ec2-user/anaconda3/envs/tensorflow2_p36/lib/python3.6/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py", line 99, in wrapper
return f(*args, **kwargs)
File "<ipython-input-24-e3999c55086a>", line 14, in preprocess
TypeError: a bytes-like object is required, not 'Series'
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:172)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:122)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec$$anon$2.<init>(ArrowEvalPythonExec.scala:98)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec.evaluate(ArrowEvalPythonExec.scala:96)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:127)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:89)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
.collect()
)from pyspark.ml.image import ImageSchema
#https://stackoverflow.com/questions/67705881/unable-to-read-images-simultaneously-in-parallels-using-pyspark
df = df.select('image.*')
# Pre-caching the required schema. If you remove this line an error will be raised.
ImageSchema.imageFields
# Transforming images to np.array
arrays = df.rdd.map(ImageSchema.toNDArray).collect()
img = np.array(arrays)
print(img.shape)
输出:(60, 100, 100, 3)
除此之外,我还需要执行 PCA 来减少图像变暗。
最佳答案
尝试在 UDF 中使用 ImageSchema
和 DenseVector
并将该函数应用于解压缩的 image
列(结构格式)。结果将是图像的密集矢量格式。
df = spark.read.format("image").load(url)
df.show()
# +--------------------+
# | image|
# +--------------------+
# |[file:///content/...|
# |[file:///content/...|
# +--------------------+
import pyspark.sql.functions as F
from pyspark.ml.image import ImageSchema
from pyspark.ml.linalg import DenseVector, VectorUDT
ImageSchema.imageFields
img2vec = F.udf(lambda x: DenseVector(ImageSchema.toNDArray(x).flatten()), VectorUDT())
df = df.withColumn('vecs', img2vec("image"))
df.show()
# +--------------------+--------------------+
# | image| vecs|
# +--------------------+--------------------+
# |[file:///content/...|[255.0,255.0,255....|
# |[file:///content/...|[248.0,248.0,248....|
# +--------------------+--------------------+
关于python - 如何使用 PySpark 预处理图像?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69205589/
我在网上搜索但没有找到任何合适的文章解释如何使用 javascript 使用 WCF 服务,尤其是 WebScriptEndpoint。 任何人都可以对此给出任何指导吗? 谢谢 最佳答案 这是一篇关于
我正在编写一个将运行 Linux 命令的 C 程序,例如: cat/etc/passwd | grep 列表 |剪切-c 1-5 我没有任何结果 *这里 parent 等待第一个 child (chi
所以我正在尝试处理文件上传,然后将该文件作为二进制文件存储到数据库中。在我存储它之后,我尝试在给定的 URL 上提供文件。我似乎找不到适合这里的方法。我需要使用数据库,因为我使用 Google 应用引
我正在尝试制作一个宏,将下面的公式添加到单元格中,然后将其拖到整个列中并在 H 列中复制相同的公式 我想在 F 和 H 列中输入公式的数据 Range("F1").formula = "=IF(ISE
问题类似于this one ,但我想使用 OperatorPrecedenceParser 解析带有函数应用程序的表达式在 FParsec . 这是我的 AST: type Expression =
我想通过使用 sequelize 和 node.js 将这个查询更改为代码取决于在哪里 select COUNT(gender) as genderCount from customers where
我正在使用GNU bash,版本5.0.3(1)-发行版(x86_64-pc-linux-gnu),我想知道为什么简单的赋值语句会出现语法错误: #/bin/bash var1=/tmp
这里,为什么我的代码在 IE 中不起作用。我的代码适用于所有浏览器。没有问题。但是当我在 IE 上运行我的项目时,它发现错误。 而且我的 jquery 类和 insertadjacentHTMl 也不
我正在尝试更改标签的innerHTML。我无权访问该表单,因此无法编辑 HTML。标签具有的唯一标识符是“for”属性。 这是输入和标签的结构:
我有一个页面,我可以在其中返回用户帖子,可以使用一些 jquery 代码对这些帖子进行即时评论,在发布新评论后,我在帖子下插入新评论以及删除 按钮。问题是 Delete 按钮在新插入的元素上不起作用,
我有一个大约有 20 列的“管道分隔”文件。我只想使用 sha1sum 散列第一列,它是一个数字,如帐号,并按原样返回其余列。 使用 awk 或 sed 执行此操作的最佳方法是什么? Accounti
我需要将以下内容插入到我的表中...我的用户表有五列 id、用户名、密码、名称、条目。 (我还没有提交任何东西到条目中,我稍后会使用 php 来做)但由于某种原因我不断收到这个错误:#1054 - U
所以我试图有一个输入字段,我可以在其中输入任何字符,但然后将输入的值小写,删除任何非字母数字字符,留下“。”而不是空格。 例如,如果我输入: 地球的 70% 是水,-!*#$^^ & 30% 土地 输
我正在尝试做一些我认为非常简单的事情,但出于某种原因我没有得到想要的结果?我是 javascript 的新手,但对 java 有经验,所以我相信我没有使用某种正确的规则。 这是一个获取输入值、检查选择
我想使用 angularjs 从 mysql 数据库加载数据。 这就是应用程序的工作原理;用户登录,他们的用户名存储在 cookie 中。该用户名显示在主页上 我想获取这个值并通过 angularjs
我正在使用 autoLayout,我想在 UITableViewCell 上放置一个 UIlabel,它应该始终位于单元格的右侧和右侧的中心。 这就是我想要实现的目标 所以在这里你可以看到我正在谈论的
我需要与 MySql 等效的 elasticsearch 查询。我的 sql 查询: SELECT DISTINCT t.product_id AS id FROM tbl_sup_price t
我正在实现代码以使用 JSON。 func setup() { if let flickrURL = NSURL(string: "https://api.flickr.com/
我尝试使用for循环声明变量,然后测试cols和rols是否相同。如果是,它将运行递归函数。但是,我在 javascript 中执行 do 时遇到问题。有人可以帮忙吗? 现在,在比较 col.1 和
我举了一个我正在处理的问题的简短示例。 HTML代码: 1 2 3 CSS 代码: .BB a:hover{ color: #000; } .BB > li:after {
我是一名优秀的程序员,十分优秀!