- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
您需要下载 fonts.zip 并将其解压缩到与要运行的示例代码相同的文件夹中。
此代码的目的是生成随机文本,将文本渲染并保存为图像。该代码接受 letters
和 numbers
,它们分别是要从中生成文本的字母和数字的总体。它还接受 character_frequency
,它确定将生成每个字符的实例数。然后生成一个长字符串,并将其拆分为存储在 TextGenerator.dataset
属性中的随机大小子字符串,该属性由 TextGenerator.initialize_dataset
产生。
Ex: for letters = 'abc', numbers = '123', character frequency = 3, 'aaabbbccc111222333' is generated, shuffled, and split to random size substrings ex: ['a312c', '1b1', 'bba32c3a2c'].
然后每个单词将被渲染并保存为图像,该图像来自本题的 TextGenerator.save_images
。
有一个executor
参数,在下面的示例中,concurrent.futures.ThreadPoolExecutor
和concurrent.futures.ProcessPoolExecutor
将被传递给TextGenerator
,用于演示目的。
问题是什么?
character_frequency
增加的越多,存储在 TextGenerator.dataset
中的数据集就越长,但是,它不应该影响性能。实际发生了什么:character_frequency
越多,TextGenerator.save_images
完成 with concurrent.futures.ProcessPoolExecutor
所需的时间就越多。另一方面,一切都保持不变,而是传递 concurrent.futures.ThreadPoolExecutor
,所需时间是恒定的,不受 character_frequency
的影响。
import random
import string
import tempfile
import textwrap
from concurrent.futures import (ProcessPoolExecutor, ThreadPoolExecutor,
as_completed)
from pathlib import Path
from time import perf_counter
import numpy as np
import pandas as pd
from cv2 import cv2
from PIL import Image, ImageDraw, ImageFont
class TextGenerator:
def __init__(
self,
fonts,
character_frequency,
executor,
max_images=None,
background_colors=((255, 255, 255),),
font_colors=((0, 0, 0),),
font_sizes=(25,),
max_example_size=25,
min_example_size=1,
max_chars_per_line=80,
output_dir='data',
workers=1,
split_letters=False,
):
assert (
min_example_size > 0
), f'`min_example_size` should be > 0`, got {min_example_size}'
assert (
max_example_size > 0
), f'`max_example_size` should be > 0`, got {max_example_size}'
self.fonts = fonts
self.character_frequency = character_frequency
self.executor = executor
self.max_images = max_images
self.background_colors = background_colors
self.font_colors = font_colors
self.font_sizes = font_sizes
self.max_example_size = max_example_size
self.min_example_size = min_example_size
self.max_chars_per_line = max_chars_per_line
self.output_dir = Path(output_dir)
self.workers = workers
self.split_letters = split_letters
self.digits = len(f'{character_frequency}')
self.max_font = max(font_sizes)
self.generated_labels = []
self.dataset = []
self.dataset_size = 0
def render_text(self, text_lines):
font = random.choice(self.fonts)
font_size = random.choice(self.font_sizes)
background_color = random.choice(self.background_colors)
font_color = random.choice(self.font_colors)
max_width, total_height = 0, 0
font = ImageFont.truetype(font, font_size)
line_sizes = {}
for line in text_lines:
width, height = font.getsize(line)
line_sizes[line] = width, height
max_width = max(width, max_width)
total_height += height
image = Image.new('RGB', (max_width, total_height), background_color)
draw = ImageDraw.Draw(image)
current_height = 0
for line_text, dimensions in line_sizes.items():
draw.text((0, current_height), line_text, font_color, font=font)
current_height += dimensions[1]
return np.array(image)
def display_progress(self, example_idx):
print(
f'\rGenerating example {example_idx + 1}/{self.dataset_size}',
end='',
)
def generate_example(self, text_lines, example_idx):
text_box = self.render_text(text_lines)
filename = (self.output_dir / f'{example_idx:0{self.digits}d}.jpg').as_posix()
cv2.imwrite(filename, text_box)
return filename, text_lines
def create_dataset_pool(self, executor, example_idx):
future_items = []
for j in range(self.workers):
if not self.dataset:
break
text = self.dataset.pop()
if text.strip():
text_lines = textwrap.wrap(text, self.max_chars_per_line)
future_items.append(
executor.submit(
self.generate_example,
text_lines,
j + example_idx,
)
)
return future_items
def write_images(self):
i = 0
with self.executor(self.workers) as executor:
while i < self.dataset_size:
future_items = self.create_dataset_pool(executor, i)
for future_item in as_completed(future_items):
filename, text_lines = future_item.result()
if filename:
self.generated_labels.append(
{'filename': filename, 'label': '\n'.join(text_lines)}
)
self.display_progress(i)
i += min(self.workers, self.dataset_size - i)
if self.max_images and i >= self.max_images:
break
def initialize_dataset(self, letters, numbers, space_freq):
for characters in letters, numbers:
dataset = list(
''.join(
letter * self.character_frequency
for letter in characters + ' ' * space_freq
)
)
random.shuffle(dataset)
self.dataset.extend(dataset)
i = 0
temp_dataset = []
min_split_example_size = min(self.max_example_size, self.max_chars_per_line)
total_letters = len(self.dataset)
while i < total_letters - self.min_example_size:
example_size = random.randint(self.min_example_size, self.max_example_size)
example = ''.join(self.dataset[i : i + example_size])
temp_dataset.append(example)
i += example_size
if self.split_letters:
split_example = ' '.join(list(example))
for sub_example in textwrap.wrap(split_example, min_split_example_size):
if (sub_example_size := len(sub_example)) >= self.min_example_size:
temp_dataset.append(sub_example)
i += sub_example_size
self.dataset = temp_dataset
self.dataset_size = len(self.dataset)
def generate(self, letters, numbers, space_freq, fp='labels.csv'):
self.output_dir.mkdir(parents=True, exist_ok=True)
self.initialize_dataset(letters, numbers, space_freq)
t1 = perf_counter()
self.write_images()
t2 = perf_counter()
print(
f'\ntotal time: {t2 - t1} seconds, character frequency '
f'specified: {self.character_frequency}, type: {self.executor.__name__}'
)
pd.DataFrame(self.generated_labels).to_csv(self.output_dir / fp, index=False)
if __name__ == '__main__':
out = Path(tempfile.mkdtemp())
total_images = 15
for char_freq in [100, 1000, 1000000]:
for ex in [ThreadPoolExecutor, ProcessPoolExecutor]:
g = TextGenerator(
[
p.as_posix()
for p in Path('fonts').glob('*.ttf')
],
char_freq,
ex,
max_images=total_images,
output_dir=out,
max_example_size=15,
min_example_size=5,
)
g.generate(string.ascii_letters, '0123456789', 1)
在我的 i5 mbp 上产生以下结果:
Generating example 15/649
total time: 0.0652076720000001 seconds, character frequency specified: 100, type: ThreadPoolExecutor
Generating example 15/656
total time: 1.1637316500000001 seconds, character frequency specified: 100, type: ProcessPoolExecutor
Generating example 15/6442
total time: 0.06430166800000015 seconds, character frequency specified: 1000, type: ThreadPoolExecutor
Generating example 15/6395
total time: 1.2626316840000005 seconds, character frequency specified: 1000, type: ProcessPoolExecutor
Generating example 15/6399805
total time: 0.05754961300000616 seconds, character frequency specified: 1000000, type: ThreadPoolExecutor
Generating example 15/6399726
total time: 45.18768219699999 seconds, character frequency specified: 1000000, type: ProcessPoolExecutor
使用 character_frequency
= 1000000 保存 15 张图像需要 0.05 秒(线程)与 45 秒(进程)。为什么要花这么长时间?为什么它会受到 character_frequency
值的影响?这是独立的,应该只影响初始化时间(这正是线程发生的事情)
最佳答案
假设我正确解释了您的代码,您正在生成示例文本,其大小由 character_frequency
值控制。值越大,文本越长。
文本是在程序的主循环中生成的。然后你安排一组任务来接收所述文本并根据它生成图像。
由于进程位于单独的内存地址空间中,因此需要通过 pipe 将文本发送给它们.该管道是影响性能的瓶颈。您看到性能随着 character_frequency
的增长而恶化的原因是因为更多文本需要序列化并按顺序通过所述管道发送。您的工作人员在等待数据到达时正在挨饿。
此问题不会影响您的线程池,因为线程位于主进程的同一内存地址空间中。因此,数据不需要序列化并在您的操作系统中发送。
为了在使用进程时加速您的程序,您可以在 worker 本身中移动文本生成逻辑,或者将所述文本写入一个或多个文件中。然后让工作人员自己处理打开这些文件,这样您就可以利用 I/O 并行化。您的所有主要流程所做的就是将工作人员指向正确的文件位置或文件名。
关于python - 相同的代码,多线程比多处理快 900 倍,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70424362/
我是一名优秀的程序员,十分优秀!