- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有以下数据集(输出 here ):
# A tibble: 3,713 x 17
ID Age Group RHR HRV Sleep.Onset Wake.Onset Hours.in.Bed Hours.of.Sleep Sleep.Disturbances Latency.min Cycles REM.Sleep.hours Deep.Sleep.hours
<int> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int> <dbl> <dbl>
1 5027 Young Increase 58 73 0.180 0.458 6.66 5.33 9 8.98 6 1.4 0.32
2 5027 Young Increase 83 27 0.162 0.542 9.1 6.84 15 3.48 9 1.19 1.54
3 5027 Young Increase 57 85 0.113 0.318 4.92 4.43 5 1.98 4 1.32 0.44
4 5027 Young Increase 60 70 0.0975 0.319 5.32 3.75 3 26.5 4 1.02 0.14
5 5027 Young Increase 63 72 0.105 0.329 5.38 4.74 5 2.48 5 1.32 0.07
6 5027 Young Increase 62 61 0.983 0.472 11.8 9.44 9 4.48 8 2.07 0.84
7 5027 Young Increase 66 68 0.142 0.426 6.83 5.48 15 2.98 6 1.48 0.35
8 5027 Young Increase 81 28 0.0908 0.177 2.06 1.93 2 2.48 1 0.22 0.22
9 5027 Young Increase 69 57 0.158 0.443 6.85 6.58 13 0.48 6 2.43 0
10 5027 Young Increase 63 60 0.0859 0.318 5.58 5.47 4 0.48 5 1.34 0.13
# ... with 3,703 more rows, and 3 more variables: Light.Sleep.hours <dbl>, Awake.hours <dbl>, Session <chr>
我正在尝试计算每个变量的 t 检验,按 Age
和 Session
(前或后)之间的 Group
分组。
df %>%
select(-ID) %>%
group_by(Age, Group) %>%
summarize_at(
vars(-group_cols(), -Session),
list(p.value = ~ t.test(. ~ Session)$p.value))
我对 p 值很成功:
# A tibble: 4 x 15
# Groups: Age [2]
Age Group RHR_p.value HRV_p.value Sleep.Onset_p.value Wake.Onset_p.value Hours.in.Bed_p.value Hours.of.Sleep_p~ Sleep.Disturban~ Latency.min_p.v~
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Old Decrease 0.0594 0.865 0.495 0.885 0.316 0.307 0.148 0.00237
2 Old Increase 0.00920 0.634 0.0979 0.0514 0.00774 0.00762 0.247 0.933
3 Young Decrease 0.0975 0.259 0.779 0.760 0.959 0.975 0.256 0.181
4 Young Increase 0.115 0.604 0.846 0.164 0.140 0.242 0.692 0.412
# ... with 5 more variables: Cycles_p.value <dbl>, REM.Sleep.hours_p.value <dbl>, Deep.Sleep.hours_p.value <dbl>, Light.Sleep.hours_p.value <dbl>,
# Awake.hours_p.value <dbl>
但是,我正在努力计算其他 t 统计量(mean
、sd
、t
、df
, 95%CI
) 在这些前后和正确的 p 值组之间。我正在努力做到这一点,因此不胜感激。
我想我可能需要转换长数据并使用类似这样的东西?
df %>%
group_by(Age, Group) %>%
t_test(mean ~ ., by = "Session") %>%
adjust_pvalue(method = "bonferroni") %>%
add_significance()
最佳答案
Dn数据框只能有某些对象类作为列类型。一种htest
不是其中之一。但是,我们可以将列表存储为列表列。如果我们调整当前代码以输出列表 htests 作为结果,我们以后可以单独提取测试的元素。
library(dplyr)
output <- df %>%
select(-ID) %>%
group_by(Age, Group) %>%
summarize_at(
vars(-group_cols(), -Session),
list(t.test = ~ list(t.test(. ~ Session))))
output
# A tibble: 4 × 15
# Groups: Age [2]
Age Group RHR_t.test HRV_t.test Sleep.Onset_t.test Wake.Onset_t.test Hours.in.Bed_t.test Hours.of.Sleep_t.test Sleep.Disturbance… Latency.min_t.t… Cycles_t.test REM.Sleep.hours…
<chr> <chr> <list> <list> <list> <list> <list> <list> <list> <list> <list> <list>
1 Old Decrease <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest>
2 Old Increase <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest>
3 Young Decrease <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest>
4 Young Increase <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest> <htest>
有了这个output
data.frame,我们可以根据需要从中提取单独的测试和值:
output$RHR_t.test
[[1]]
Welch Two Sample t-test
data: . by Session
t = -1.8965, df = 188.22, p-value = 0.05942
alternative hypothesis: true difference in means between group Post and group Pre is not equal to 0
95 percent confidence interval:
-3.09118590 0.06082897
sample estimates:
mean in group Post mean in group Pre
62.28902 63.80420
[[2]]
Welch Two Sample t-test
data: . by Session
t = -2.6271, df = 226.21, p-value = 0.009199
alternative hypothesis: true difference in means between group Post and group Pre is not equal to 0
95 percent confidence interval:
-3.3949577 -0.4848655
sample estimates:
mean in group Post mean in group Pre
57.95946 59.89937
[[3]]
Welch Two Sample t-test
data: . by Session
t = 1.6633, df = 251.75, p-value = 0.0975
alternative hypothesis: true difference in means between group Post and group Pre is not equal to 0
95 percent confidence interval:
-0.2074028 2.4611194
sample estimates:
mean in group Post mean in group Pre
60.58255 59.45570
[[4]]
Welch Two Sample t-test
data: . by Session
t = 1.5849, df = 208.4, p-value = 0.1145
alternative hypothesis: true difference in means between group Post and group Pre is not equal to 0
95 percent confidence interval:
-0.244287 2.247775
sample estimates:
mean in group Post mean in group Pre
60.23462 59.23288
output$RHR_t.test %>%
map_dbl('p.value')
[1] 0.059424354 0.009199459 0.097497620 0.114502332
我们还可以使用 broom::tidy
output %>%
mutate(across(ends_with('t.test'), map, broom::tidy))
# A tibble: 4 × 15
# Groups: Age [2]
Age Group RHR_t.test HRV_t.test Sleep.Onset_t.te… Wake.Onset_t.test Hours.in.Bed_t.t… Hours.of.Sleep_… Sleep.Disturbanc… Latency.min_t.t… Cycles_t.test REM.Sleep.hours…
<chr> <chr> <list> <list> <list> <list> <list> <list> <list> <list> <list> <list>
1 Old Decrease <tibble [1 × 10]> <tibble [1 … <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 ×… <tibble [1 × 10…
2 Old Increase <tibble [1 × 10]> <tibble [1 … <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 ×… <tibble [1 × 10…
3 Young Decrease <tibble [1 × 10]> <tibble [1 … <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 ×… <tibble [1 × 10…
4 Young Increase <tibble [1 × 10]> <tibble [1 … <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 × 10]> <tibble [1 × 10… <tibble [1 ×… <tibble [1 × 10…
# … with 3 more variables: Deep.Sleep.hours_t.test <list>, Light.Sleep.hours_t.test <list>, Awake.hours_t.test <list>
要让所有测试都“统计”,我们可以这样做:
tidy_output %>%
mutate(across(ends_with('t.test'), sapply, pull, 'statistic'))
# A tibble: 4 × 15
# Groups: Age [2]
Age Group RHR_t.test HRV_t.test Sleep.Onset_t.test Wake.Onset_t.test Hours.in.Bed_t.test Hours.of.Sleep_t.test Sleep.Disturbance… Latency.min_t.t… Cycles_t.test REM.Sleep.hours…
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Old Decrease -1.90 0.171 0.684 -0.145 -1.01 -1.02 -1.45 3.05 -0.928 -0.906
2 Old Increase -2.63 0.477 -1.66 -1.96 -2.69 -2.69 -1.16 0.0848 -1.76 -1.87
3 Young Decrease 1.66 1.13 0.281 -0.305 0.0509 -0.0320 1.14 -1.34 -0.675 0.672
4 Young Increase 1.58 0.519 0.195 -1.40 -1.48 -1.17 0.397 -0.821 -1.73 0.886
# … with 3 more variables: Deep.Sleep.hours_t.test <dbl>, Light.Sleep.hours_t.test <dbl>, Awake.hours_t.test <dbl>
关于r - 分组并在 R 中运行多个 t 测试,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70899662/
我对这个错误很困惑: Cannot implicitly convert type 'System.Func [c:\Program Files (x86)\Reference Assemblies\
考虑这段代码: pub trait Hello { fn hello(&self); } impl Hello for Any { fn hello(&self) {
问题很简单。是否可以构造这样一个类型 T,对于它下面的两个变量声明会产生不同的结果? T t1 = {}; T t2{}; 我已经研究 cppreference 和标准一个多小时了,我了解以下内容:
Intellij idea 给我这个错误:“Compare (T, T) in Comparator cannot be applied to (T, T)” 对于以下代码: public class
任何人都可以告诉我 : n\t\t\t\t\n\t\t\t 在以下来自和 dwr 服务的响应中的含义和用途是什么. \r\n\t\t\t \r\n\t\t\t
让 T 成为一个 C++ 类。 下面三个指令在行为上有什么区别吗? T a; T a(); T a = T(); T 为不带参数的构造函数提供了显式定义这一事实是否对问题有任何改变? 后续问题:如果
Rust中的智能指针是什么 智能指针(smart pointers)是一类数据结构,是拥有数据所有权和额外功能的指针。是指针的进一步发展 指针(pointer)是一个包含内存地
比如我有一个 vector vector > v={{true,1},{true,2},{false,3},{false,4},{false,5},{true,6},{false,7},{true,8
我有一个来自 .xls 电子表格的数据框,我打印了 print(df.columns.values) 列,输出包含一个名为:Poll Responses\n\t\t\t\t\t。 我查看了 Excel
This question already has answers here: What are good reasons for choosing invariance in an API like
指针类型作为类型前缀与在类型前加斜杠作为后缀有什么区别。斜线到底是什么意思? 最佳答案 语法 T/~ 和 T/& 基本上已被弃用(我什至不确定编译器是否仍然接受它)。在向新向量方案过渡的初始阶段,[T
我正在尝试找到一种方法来获取模板参数的基类。 考虑以下类: template class Foo { public: Foo(){}; ~Foo(){};
这是一个让我感到困惑的小问题。我不知道如何描述它,所以只看下面的代码: struct B { B() {} B(B&) { std::cout ::value #include
为什么有 T::T(T&) 而 T::T(const T&) 更适合 copy ? (大概是用来实现move语义的???) 原始描述(被melpomene证明是错误的): 在C++11中,支持了一种新
在 Java 7 中使用 eclipse 4.2 并尝试实现 List 接口(interface)的以下方法时,我收到了警告。 public T[] toArray(T[] a) { ret
假设有三个函数: def foo[T](a:T, b:T): T = a def test1 = foo(1, "2") def test2 = foo(List(), ListBuffer()) 虽
我对柯里化(Currying)和非柯里化(Currying)泛型函数之间类型检查的差异有点困惑: scala> def x[T](a: T, b: T) = (a == b) x: [T](a: T,
考虑一个类A,我如何编写一个具有与相同行为的模板 A& pretty(A& x) { /* make x pretty */ return x; } A pretty(A&& x) {
Eclipse 表示由于泛型类型橡皮擦,类型参数不允许使用 instanceof 操作。 我同意在运行时不会保留任何类型信息。但是请考虑以下类的通用声明: class SomeClass{ T
在 C++14 中: 对于任何整数或枚举类型 T 以及对于任何表达式 expr: 有没有区别: struct S { T t { expr }; }; 和 struct S { T t = { exp
我是一名优秀的程序员,十分优秀!