- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个显示 RGL 可视化效果的 Shiny 应用程序(这只不过是一组抛光的棍子和球体)。请查看下面的可视化代码
library(rgl)
library(tidyverse)
sphere1.f <- function(x0 = 0, y0 = 0, z0 = 0, r = 1, n = 101, ...){
f <- function(s,t){
cbind( r * cos(t)*cos(s) + x0,
r * sin(s) + y0,
r * sin(t)*cos(s) + z0)
}
persp3d(f, slim = c(-pi/2,pi/2), tlim = c(0, 2*pi), n = n, add = T, ...)
}
agg <- structure(list(X1 = c(-0.308421860438279, -1.42503395393061,
1.10667871416591, -0.41759848570565, 0.523721760757519, 0.520653825151111,
4.54213267745731, 2.96469370222004, 6.32495200153492, 3.78715565912871,
5.35968114482443), X2 = c(0.183223776337368, 1.69719822686475,
-0.992839275466541, 2.22182475540691, -0.705817674534376, -2.40358980860811,
-0.565561169031234, -0.362260309907445, 0.326094711744554, 0.60340188259578,
-0.00167511540165435), X3 = c(-0.712687792799106, -0.0336746884947792,
0.0711272759107127, 1.6126544944538, -2.29999319137504, 1.36257390230441,
-1.52942342176029, -0.316841449239697, -1.69222713171002, 1.23000775530984,
2.30848424740017)), class = c("spec_tbl_df", "tbl_df", "tbl",
"data.frame"), row.names = c(NA, -11L), spec = structure(list(
cols = list(X1 = structure(list(), class = c("collector_double",
"collector")), X2 = structure(list(), class = c("collector_double",
"collector")), X3 = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 0), class = "col_spec"))
bond_segments <- structure(list(X1 = c(-1.42503395393061, -0.308421860438279,
1.10667871416591, -0.308421860438279, 0.523721760757519, -0.308421860438279,
-0.41759848570565, -1.42503395393061, 0.520653825151111, 1.10667871416591,
2.96469370222004, 1.10667871416591, 2.96469370222004, 4.54213267745731,
6.32495200153492, 4.54213267745731, 3.78715565912871, 2.96469370222004,
5.35968114482443, 3.78715565912871), X2 = c(1.69719822686475,
0.183223776337368, -0.992839275466541, 0.183223776337368, -0.705817674534376,
0.183223776337368, 2.22182475540691, 1.69719822686475, -2.40358980860811,
-0.992839275466541, -0.362260309907445, -0.992839275466541, -0.362260309907445,
-0.565561169031234, 0.326094711744554, -0.565561169031234, 0.60340188259578,
-0.362260309907445, -0.00167511540165435, 0.60340188259578),
X3 = c(-0.0336746884947792, -0.712687792799106, 0.0711272759107127,
-0.712687792799106, -2.29999319137504, -0.712687792799106,
1.6126544944538, -0.0336746884947792, 1.36257390230441, 0.0711272759107127,
-0.316841449239697, 0.0711272759107127, -0.316841449239697,
-1.52942342176029, -1.69222713171002, -1.52942342176029,
1.23000775530984, -0.316841449239697, 2.30848424740017, 1.23000775530984
)), class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -20L), spec = structure(list(cols = list(
X1 = structure(list(), class = c("collector_double", "collector"
)), X2 = structure(list(), class = c("collector_double",
"collector")), X3 = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 0), class = "col_spec"))
open3d()
#> glX
#> 1
material3d(ambient = "black", specular = "grey60", emission = "black", shininess = 30.0)
clear3d(type = "lights")
light3d(theta = -30, phi = 60, viewpoint.rel = TRUE, ambient = "#FFFFFF", diffuse = "#FFFFFF", specular = "#FFFFFF", x = NULL, y = NULL, z = NULL)
light3d(theta = -0, phi = 0, viewpoint.rel = TRUE, diffuse = "gray20", specular = "gray25", ambient = "gray80", x = NULL, y = NULL, z = NULL)
agg %>%
rowwise() %>%
mutate(spheres = sphere1.f(X1, X2, X3, r=0.5## , col = "pink"
))
#> # A tibble: 11 × 4
#> # Rowwise:
#> X1 X2 X3 spheres
#> <dbl> <dbl> <dbl> <rglLwlvl>
#> 1 -0.308 0.183 -0.713 15
#> 2 -1.43 1.70 -0.0337 16
#> 3 1.11 -0.993 0.0711 17
#> 4 -0.418 2.22 1.61 18
#> 5 0.524 -0.706 -2.30 19
#> 6 0.521 -2.40 1.36 20
#> 7 4.54 -0.566 -1.53 21
#> 8 2.96 -0.362 -0.317 22
#> 9 6.32 0.326 -1.69 23
#> 10 3.79 0.603 1.23 24
#> 11 5.36 -0.00168 2.31 25
ll <- LETTERS[1:nrow(agg)]
text3d(x=agg$X1, y = agg$X2, z = agg$X3, ll,
adj = c(0,-1.6)
,
## pos = 3, offset = 1.7,
cex=0.8, usePlotmath = T,
, fixedSize = FALSE)
## text3d(agg, texts = LETTERS[1:11], ## adj = -2,
## pos=3, offset = 1.5, cex=2,
## usePlotmath = TRUE, fixedSize = FALSE)
segments3d(bond_segments, lwd=8, color="black")
## rgl.close()
由 reprex package 创建于 2022-02-28 (v2.0.1)
如何在 Shiny 应用程序中显示它?我用谷歌搜索了一下,找到了这个包
https://www.r-project.org/nosvn/pandoc/shinyRGL.html
而且我还看到了renderRglwidget的存在,见例
R shiny and rgl : 3D points disappear when axes displayed
我追求的是相当简单的东西:一个带有一些控件的流畅页面,我将在左侧添加一些控件,在右侧添加可视化效果。任何人都可以用我现有的 RGL 代码给我一个例子吗?
非常感谢
最佳答案
好吧,下面的代码目前对我来说已经足够好了,可以完成工作。它可以工作并且可以在线部署。
library(rgl)
library(tidyverse)
library(shiny)
sphere1.f <- function(x0 = 0, y0 = 0, z0 = 0, r = 1, n = 101, ...){
f <- function(s,t){
cbind( r * cos(t)*cos(s) + x0,
r * sin(s) + y0,
r * sin(t)*cos(s) + z0)
}
persp3d(f, slim = c(-pi/2,pi/2), tlim = c(0, 2*pi), n = n, add = T, ...)
}
## app <- shinyApp(
ui <- bootstrapPage(
inputPanel(
sliderInput("n", label = "n", min = 10, max = 100, value = 10, step = 10)
),
mainPanel(
({
rglwidgetOutput("myplot", width = "1280px", height = "1280px")
})
)
)
server <- function(input, output) {
output$myplot <- renderRglwidget({
agg <- structure(list(X1 = c(-0.308421860438279, -1.42503395393061,
1.10667871416591, -0.41759848570565, 0.523721760757519, 0.520653825151111,
4.54213267745731, 2.96469370222004, 6.32495200153492, 3.78715565912871,
5.35968114482443), X2 = c(0.183223776337368, 1.69719822686475,
-0.992839275466541, 2.22182475540691, -0.705817674534376, -2.40358980860811,
-0.565561169031234, -0.362260309907445, 0.326094711744554, 0.60340188259578,
-0.00167511540165435), X3 = c(-0.712687792799106, -0.0336746884947792,
0.0711272759107127, 1.6126544944538, -2.29999319137504, 1.36257390230441,
-1.52942342176029, -0.316841449239697, -1.69222713171002, 1.23000775530984,
2.30848424740017)), class = c("spec_tbl_df", "tbl_df", "tbl",
"data.frame"), row.names = c(NA, -11L), spec = structure(list(
cols = list(X1 = structure(list(), class = c("collector_double",
"collector")), X2 = structure(list(), class = c("collector_double",
"collector")), X3 = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 0), class = "col_spec"))
bond_segments <- structure(list(X1 = c(-1.42503395393061, -0.308421860438279,
1.10667871416591, -0.308421860438279, 0.523721760757519, -0.308421860438279,
-0.41759848570565, -1.42503395393061, 0.520653825151111, 1.10667871416591,
2.96469370222004, 1.10667871416591, 2.96469370222004, 4.54213267745731,
6.32495200153492, 4.54213267745731, 3.78715565912871, 2.96469370222004,
5.35968114482443, 3.78715565912871), X2 = c(1.69719822686475,
0.183223776337368, -0.992839275466541, 0.183223776337368, -0.705817674534376,
0.183223776337368, 2.22182475540691, 1.69719822686475, -2.40358980860811,
-0.992839275466541, -0.362260309907445, -0.992839275466541, -0.362260309907445,
-0.565561169031234, 0.326094711744554, -0.565561169031234, 0.60340188259578,
-0.362260309907445, -0.00167511540165435, 0.60340188259578),
X3 = c(-0.0336746884947792, -0.712687792799106, 0.0711272759107127,
-0.712687792799106, -2.29999319137504, -0.712687792799106,
1.6126544944538, -0.0336746884947792, 1.36257390230441, 0.0711272759107127,
-0.316841449239697, 0.0711272759107127, -0.316841449239697,
-1.52942342176029, -1.69222713171002, -1.52942342176029,
1.23000775530984, -0.316841449239697, 2.30848424740017, 1.23000775530984
)), class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"
), row.names = c(NA, -20L), spec = structure(list(cols = list(
X1 = structure(list(), class = c("collector_double", "collector"
)), X2 = structure(list(), class = c("collector_double",
"collector")), X3 = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 0), class = "col_spec"))
try(close3d())
material3d(ambient = "black", specular = "grey60", emission = "black", shininess = 30.0)
clear3d(type = "lights")
light3d(theta = -30, phi = 60, viewpoint.rel = TRUE, ambient = "#FFFFFF", diffuse = "#FFFFFF", specular = "#FFFFFF", x = NULL, y = NULL, z = NULL)
light3d(theta = -0, phi = 0, viewpoint.rel = TRUE, diffuse = "gray20", specular = "gray25", ambient = "gray80", x = NULL, y = NULL, z = NULL)
agg %>%
rowwise() %>%
mutate(spheres = sphere1.f(X1, X2, X3, r=0.5## , col = "pink"
))
ll <- LETTERS[1:nrow(agg)]
text3d(x=agg$X1, y = agg$X2, z = agg$X3, ll,
adj = c(0,-1.6)
,
## pos = 3, offset = 1.7,
cex=0.8, usePlotmath = T,
, fixedSize = FALSE)
segments3d(bond_segments, lwd=8, color="black")
rglwidget()
})
}
shinyApp(ui = ui, server = server)
关于R + Shiny + RGL : Recommended Way to Combine Shiny and RGL,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/71296473/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!