- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个如下所示的数据框
stud_name act_qtr year yr_qty qtr mov_avg_full mov_avg_2qtr_min_period
0 ABC Q2 2014 2014Q2 NaN NaN NaN
1 ABC Q1 2016 2016Q1 Q1 13.0 14.5
2 ABC Q4 2016 2016Q4 NaN NaN NaN
3 ABC Q4 2017 2017Q4 NaN NaN NaN
4 ABC Q4 2020 2020Q4 NaN NaN NaN
OP = pd.read_clipboard()
stud_name qtr year t_score p_score yr_qty mov_avg_full mov_avg_2qtr_min_period
0 ABC Q1 2014 10 11 2014Q1 10.000000 10.0
1 ABC Q1 2015 11 32 2015Q1 10.500000 10.5
2 ABC Q2 2015 13 45 2015Q2 11.333333 12.0
3 ABC Q3 2015 15 32 2015Q3 12.250000 14.0
4 ABC Q4 2015 17 21 2015Q4 13.200000 16.0
5 ABC Q1 2016 12 56 2016Q1 13.000000 14.5
6 ABC Q2 2017 312 87 2017Q2 55.714286 162.0
7 ABC Q3 2018 24 90 2018Q3 51.750000 168.0
df = pd.read_clipboard()
我想根据以下逻辑填充na()
例如:让我们采用stud_name = ABC
。他有多个 NA 记录。让我们以他的 NA
为 2020Q4
。为了填充它,我们从 df
中为 stud_name=ABC
选择 2020Q4
(即 2018Q3)之前的最新记录。同样,如果我们取 stud_name = ABC
。他的另一项 NA
记录是 2014Q2
。我们从 df
中为 stud_name=ABC
选择 2014Q2
(即 2014Q1)之前的最新(先前)记录。我们需要根据 yearqty
值进行排序,以正确获取最新(先前)的记录
我们需要为每个 stud_name
和一个大数据集执行此操作
因此,我们填写 mov_avg_full
和 mov_avg_2qtr_min_period
如果 df dataframe 中没有以前的记录可查看,则保留 NA 原样
我正在尝试类似下面的方法,但它不起作用且不正确
Filled = OP.merge(df,on=['stud_name'],how='left')
filled.sort_values(['year','Qty'],inplace=True)
filled['mov_avg_full'].fillna(Filled.groupby('stud_name']['mov_avg_full'].shift())
filled['mov_avg_2qtr_min_period'].fillna(Filled .groupby('stud_name']['mov_avg_2qtr_min_period'].shift())
我希望我的输出如下所示
最佳答案
在这种情况下,您可能想使用 append
而不是 merge
.换句话说,您想要垂直连接而不是水平连接。然后在按 stud_name
对 DataFrame 进行排序之后和 yr_qtr
, 你可以使用 groupby
和 fillna
方法。
import pandas as pd
# Create the sample dataframes
import numpy as np
op = pd.DataFrame({'stud_name': {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC'}, 'act_qtr': {0: 'Q2', 1: 'Q1', 2: 'Q4', 3: 'Q4', 4: 'Q4'}, 'year': {0: 2014, 1: 2016, 2: 2016, 3: 2017, 4: 2020}, 'yr_qty': {0: '2014Q2', 1: '2016Q1', 2: '2016Q4', 3: '2017Q4', 4: '2020Q4'}, 'qtr': {0: np.NaN, 1: 'Q1', 2: np.NaN, 3: np.NaN, 4: np.NaN}, 'mov_avg_full': {0: np.NaN, 1: 13.0, 2: np.NaN, 3: np.NaN, 4: np.NaN}, 'mov_avg_2qtr_min_period': {0: np.NaN, 1: 14.5, 2: np.NaN, 3: np.NaN, 4: np.NaN}})
df = pd.DataFrame({'stud_name': {0: 'ABC', 1: 'ABC', 2: 'ABC', 3: 'ABC', 4: 'ABC', 5: 'ABC', 6: 'ABC', 7: 'ABC'}, 'qtr': {0: 'Q1', 1: 'Q1', 2: 'Q2', 3: 'Q3', 4: 'Q4', 5: 'Q1', 6: 'Q2', 7: 'Q3'}, 'year': {0: 2014, 1: 2015, 2: 2015, 3: 2015, 4: 2015, 5: 2016, 6: 2017, 7: 2018}, 't_score': {0: 10, 1: 11, 2: 13, 3: 15, 4: 17, 5: 12, 6: 312, 7: 24}, 'p_score': {0: 11, 1: 32, 2: 45, 3: 32, 4: 21, 5: 56, 6: 87, 7: 90}, 'yr_qty': {0: '2014Q1', 1: '2015Q1', 2: '2015Q2', 3: '2015Q3', 4: '2015Q4', 5: '2016Q1', 6: '2017Q2', 7: '2018Q3'}, 'mov_avg_full': {0: 10.0, 1: 10.5, 2: 11.333333, 3: 12.25, 4: 13.2, 5: 13.0, 6: 55.714286, 7: 51.75}, 'mov_avg_2qtr_min_period': {0: 10.0, 1: 10.5, 2: 12.0, 3: 14.0, 4: 16.0, 5: 14.5, 6: 162.0, 7: 168.0}})
# Append df to op
dfa = op.append(df[['stud_name', 'yr_qty', 'mov_avg_full', 'mov_avg_2qtr_min_period']])
# Sort before applying fillna
dfa = dfa.sort_values(['stud_name', 'yr_qty'])
# Group by stud_name and apply ffill
dfa[['mov_avg_full', 'mov_avg_2qtr_min_period']] = dfa.groupby('stud_name')[['mov_avg_full', 'mov_avg_2qtr_min_period']].fillna(method='ffill')
# Extract the orginal rows from op and deal with columns
dfa = dfa[dfa.act_qtr.notna()].drop('qtr', axis=1)
print(dfa)
关于python - Pandas 填补了 NA 但并非全部基于最近的记录,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/71305279/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!