- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我需要获取每个设置(行)的灵敏度(第7列)
网站:https://prosettings.net/cs-go-pro-settings-gear-list/
表编号:“table_1”
2 行类:“偶数”、“奇数”
敏感度等级:“numdata float column-sensitivity”
我做了这个,但它只打印 None(我是编程新手,哈哈)
import requests
from bs4 import BeautifulSoup
site = "https://prosettings.net/cs-go-pro-settings-gear-list/"
r = requests.get(site)
soup = BeautifulSoup(r. text, "html.parser")
settings_table = soup.find("table", id="table_1")
for settings in settings_table.find_all("tbody"):
rows = settings.find_all("tr")
for row in rows:
sens = row.find("td", class_=" numdata float column sensitivity")
print(sens)
最佳答案
数据来自 POST
请求。
下面是获取第七行的方法,即sensitivity
:
import requests
api_url = "https://prosettings.net/wp-admin/admin-ajax.php?action=get_wdtable&table_id=55"
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:100.0) Gecko/20100101 Firefox/100.0",
"X-Requested-With": "XMLHttpRequest",
"Content-Type": "application/x-www-form-urlencoded; charset=UTF-8",
"Referer": "https://prosettings.net/cs-go-pro-settings-gear-list/",
}
payload = "draw=1&columns%5B0%5D%5Bdata%5D=0&columns%5B0%5D%5Bname%5D=rank&columns%5B0%5D%5Bsearchable%5D=true&columns%5B0%5D%5Borderable%5D=true&columns%5B0%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B0%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B1%5D%5Bdata%5D=1&columns%5B1%5D%5Bname%5D=team&columns%5B1%5D%5Bsearchable%5D=true&columns%5B1%5D%5Borderable%5D=true&columns%5B1%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B1%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B2%5D%5Bdata%5D=2&columns%5B2%5D%5Bname%5D=player&columns%5B2%5D%5Bsearchable%5D=true&columns%5B2%5D%5Borderable%5D=true&columns%5B2%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B2%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B3%5D%5Bdata%5D=3&columns%5B3%5D%5Bname%5D=role&columns%5B3%5D%5Bsearchable%5D=true&columns%5B3%5D%5Borderable%5D=true&columns%5B3%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B3%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B4%5D%5Bdata%5D=4&columns%5B4%5D%5Bname%5D=mouse&columns%5B4%5D%5Bsearchable%5D=true&columns%5B4%5D%5Borderable%5D=true&columns%5B4%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B4%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B5%5D%5Bdata%5D=5&columns%5B5%5D%5Bname%5D=hz&columns%5B5%5D%5Bsearchable%5D=true&columns%5B5%5D%5Borderable%5D=true&columns%5B5%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B5%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B6%5D%5Bdata%5D=6&columns%5B6%5D%5Bname%5D=dpi&columns%5B6%5D%5Bsearchable%5D=true&columns%5B6%5D%5Borderable%5D=true&columns%5B6%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B6%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B7%5D%5Bdata%5D=7&columns%5B7%5D%5Bname%5D=sensitivity&columns%5B7%5D%5Bsearchable%5D=true&columns%5B7%5D%5Borderable%5D=true&columns%5B7%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B7%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B8%5D%5Bdata%5D=8&columns%5B8%5D%5Bname%5D=edpi&columns%5B8%5D%5Bsearchable%5D=true&columns%5B8%5D%5Borderable%5D=true&columns%5B8%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B8%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B9%5D%5Bdata%5D=9&columns%5B9%5D%5Bname%5D=zoomsens&columns%5B9%5D%5Bsearchable%5D=true&columns%5B9%5D%5Borderable%5D=true&columns%5B9%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B9%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B10%5D%5Bdata%5D=10&columns%5B10%5D%5Bname%5D=mouseaccel&columns%5B10%5D%5Bsearchable%5D=true&columns%5B10%5D%5Borderable%5D=true&columns%5B10%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B10%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B11%5D%5Bdata%5D=11&columns%5B11%5D%5Bname%5D=windowssens&columns%5B11%5D%5Bsearchable%5D=true&columns%5B11%5D%5Borderable%5D=true&columns%5B11%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B11%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B12%5D%5Bdata%5D=12&columns%5B12%5D%5Bname%5D=rawinput&columns%5B12%5D%5Bsearchable%5D=true&columns%5B12%5D%5Borderable%5D=true&columns%5B12%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B12%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B13%5D%5Bdata%5D=13&columns%5B13%5D%5Bname%5D=monitor&columns%5B13%5D%5Bsearchable%5D=true&columns%5B13%5D%5Borderable%5D=true&columns%5B13%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B13%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B14%5D%5Bdata%5D=14&columns%5B14%5D%5Bname%5D=hz_1&columns%5B14%5D%5Bsearchable%5D=true&columns%5B14%5D%5Borderable%5D=true&columns%5B14%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B14%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B15%5D%5Bdata%5D=15&columns%5B15%5D%5Bname%5D=gpu&columns%5B15%5D%5Bsearchable%5D=true&columns%5B15%5D%5Borderable%5D=true&columns%5B15%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B15%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B16%5D%5Bdata%5D=16&columns%5B16%5D%5Bname%5D=resolution&columns%5B16%5D%5Bsearchable%5D=true&columns%5B16%5D%5Borderable%5D=true&columns%5B16%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B16%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B17%5D%5Bdata%5D=17&columns%5B17%5D%5Bname%5D=aspectratio&columns%5B17%5D%5Bsearchable%5D=true&columns%5B17%5D%5Borderable%5D=true&columns%5B17%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B17%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B18%5D%5Bdata%5D=18&columns%5B18%5D%5Bname%5D=scalingmode&columns%5B18%5D%5Bsearchable%5D=true&columns%5B18%5D%5Borderable%5D=true&columns%5B18%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B18%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B19%5D%5Bdata%5D=19&columns%5B19%5D%5Bname%5D=mousepad&columns%5B19%5D%5Bsearchable%5D=true&columns%5B19%5D%5Borderable%5D=true&columns%5B19%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B19%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B20%5D%5Bdata%5D=20&columns%5B20%5D%5Bname%5D=keyboard&columns%5B20%5D%5Bsearchable%5D=true&columns%5B20%5D%5Borderable%5D=true&columns%5B20%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B20%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B21%5D%5Bdata%5D=21&columns%5B21%5D%5Bname%5D=headset&columns%5B21%5D%5Bsearchable%5D=true&columns%5B21%5D%5Borderable%5D=true&columns%5B21%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B21%5D%5Bsearch%5D%5Bregex%5D=false&columns%5B22%5D%5Bdata%5D=22&columns%5B22%5D%5Bname%5D=cfgcrosshair&columns%5B22%5D%5Bsearchable%5D=true&columns%5B22%5D%5Borderable%5D=true&columns%5B22%5D%5Bsearch%5D%5Bvalue%5D=&columns%5B22%5D%5Bsearch%5D%5Bregex%5D=false&order%5B0%5D%5Bcolumn%5D=0&order%5B0%5D%5Bdir%5D=asc&start=0&length=-1&search%5Bvalue%5D=&search%5Bregex%5D=false&wdtNonce=415443b358"
data = requests.post(api_url, headers=headers, data=payload).json()["data"]
row_seven = [item[7] for item in data]
print("\n".join(row_seven))
输出:
1.45
2.20
3.09
0.90
1.42
1.70
1.60
1.65
1.40
1.90
1.77
1.50
and a lot more ...
关于python - 如何获取html表中每一行的特定列的值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/72233533/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!