- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用这个 Keras documentation example 的变压器用于多实例分类。每个实例的类别取决于同一个包中的其他实例。我使用变压器模型是因为:
It makes no assumptions about the temporal/spatial relationships across the data. This is ideal for processing a set of objects
例如,每个包最多可以有 5 个实例,每个实例有 3 个特征。
# Generate data
max_length = 5
x_lst = []
y_lst = []
for _ in range(10):
num_instances = np.random.randint(2, max_length + 1)
x_bag = np.random.randint(0, 9, size=(num_instances, 3))
y_bag = np.random.randint(0, 2, size=num_instances)
x_lst.append(x_bag)
y_lst.append(y_bag)
前 2 个包的特征和标签(5 个和 2 个实例):
x_lst[:2]
[array([[8, 0, 3],
[8, 1, 0],
[4, 6, 8],
[1, 6, 4],
[7, 4, 6]]),
array([[5, 8, 4],
[2, 1, 1]])]
y_lst[:2]
[array([0, 1, 1, 1, 0]), array([0, 0])]
接下来,我用零填充特征,用 -1 填充目标:
x_padded = []
y_padded = []
for x, y in zip(x_lst, y_lst):
x_p = np.zeros((max_length, 3))
x_p[:x.shape[0], :x.shape[1]] = x
x_padded.append(x_p)
y_p = np.negative(np.ones(max_length))
y_p[:y.shape[0]] = y
y_padded.append(y_p)
X = np.stack(x_padded)
y = np.stack(y_padded)
其中 X.shape
等于 (10, 5, 3)
而 y.shape
等于 (10 , 5)
。
我对原始模型做了两处更改:添加了 Masking 层在输入层之后,将最后一个 Dense 层中的单元数设置为袋子的最大尺寸(加上“sigmoid”激活):
def transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0):
# Attention and Normalization
x = layers.MultiHeadAttention(
key_dim=head_size, num_heads=num_heads, dropout=dropout
)(inputs, inputs)
x = layers.Dropout(dropout)(x)
x = layers.LayerNormalization(epsilon=1e-6)(x)
res = x + inputs
# Feed Forward Part
x = layers.Conv1D(filters=ff_dim, kernel_size=1, activation="relu")(res)
x = layers.Dropout(dropout)(x)
x = layers.Conv1D(filters=inputs.shape[-1], kernel_size=1)(x)
x = layers.LayerNormalization(epsilon=1e-6)(x)
return x + res
def build_model(
input_shape,
head_size,
num_heads,
ff_dim,
num_transformer_blocks,
mlp_units,
dropout=0,
mlp_dropout=0,
):
inputs = keras.Input(shape=input_shape)
inputs = keras.layers.Masking(mask_value=0)(inputs) # ADDED MASKING LAYER
x = inputs
for _ in range(num_transformer_blocks):
x = transformer_encoder(x, head_size, num_heads, ff_dim, dropout)
x = layers.GlobalAveragePooling1D(data_format="channels_first")(x)
for dim in mlp_units:
x = layers.Dense(dim, activation="relu")(x)
x = layers.Dropout(mlp_dropout)(x)
outputs = layers.Dense(5, activation='sigmoid')(x) # CHANGED ACCORDING TO MY OUTPUT
return keras.Model(inputs, outputs)
input_shape = (5, 3)
model = build_model(
input_shape,
head_size=256,
num_heads=4,
ff_dim=4,
num_transformer_blocks=4,
mlp_units=[128],
mlp_dropout=0.4,
dropout=0.25,
)
model.compile(
loss="binary_crossentropy",
optimizer=keras.optimizers.Adam(learning_rate=1e-4),
metrics=["binary_accuracy"],
)
model.summary()
看起来我的模型没有学到太多东西。如果我使用每个包的真值数量(y.sum(axis=1)
和 Dense(1)
)作为目标而不是对每个实例进行分类,模型学得很好。我的错误在哪里?在这种情况下我应该如何构建输出层?我需要自定义丢失函数吗?
更新:我做了一个自定义损失函数:
def my_loss_fn(y_true, y_pred):
mask = tf.cast(tf.math.not_equal(y_true, tf.constant(-1.)), tf.float32)
y_true, y_pred = tf.expand_dims(y_true, axis=-1), tf.expand_dims(y_pred, axis=-1)
bce = tf.keras.losses.BinaryCrossentropy(reduction='none')
return tf.reduce_sum(tf.cast(bce(y_true, y_pred), tf.float32) * mask)
mask = (y_test != -1).astype(int)
pd.DataFrame({'n_labels': mask.sum(axis=1), 'preds': ((preds * mask) >= .5).sum(axis=1)}).plot(figsize=(20, 5))
@thushv89 这是my problem .我采用 2 个时间点:t1 和 t2,并查找在时间 t1 进行维护的所有车辆以及计划在时间 t2 进行维护的所有车辆。所以,这是我的元素袋。然后我计算一些特征,比如 t1 车辆已经花费了多少时间进行维护,从 t1 到 t2 车辆计划开始的时间等。如果我尝试预测在时间 t2 进行维护的车辆数量,我的模型会学得很好,但我想预测其中哪些会离开,哪些会进来(3 vs [True, False, True, True] 对于包中的 4 辆车)。
最佳答案
三个重要的改进:
关于python - 使用 Transformer 模型的多实例分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73261021/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!