- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
据我所知,在使用 GPU 训练和验证模型时,GPU 内存主要用于加载数据,向前和向后。据我所知,我认为 GPU 内存使用应该相同 1) 训练前,2) 训练后,3) 验证前,4) 验证后。但在我的例子中,验证阶段使用的 GPU 内存在训练阶段仍然被占用,反之亦然。它不会在每个时期都增加,所以我确信这不是像 loss.item() 这样的常见错误。
这是我的问题的总结
感谢您的帮助。
这是训练循环的代码
eval_result = evaluate(model,val_loader,True,True)
print(eval_result)
print('start training')
for epoch in range(num_epoch):
model.train()
time_ = datetime.datetime.now()
for iter_, data in enumerate(tr_loader):
x, y = data
x = x.to(device).view(x.shape[0],1,*(x.shape[1:]))
y = y.to(device).long()
pred = model.forward(x)
loss = loss_fn(pred,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print
print_iter = 16
if (iter_+1) % print_iter == 0:
elapsed = datetime.datetime.now() - time_
expected = elapsed * (num_batches / print_iter)
_epoch = epoch + ((iter_ + 1) / num_batches)
print('\rTRAIN [{:.3f}/{}] loss({}) '
'elapsed {} expected per epoch {}'.format(
_epoch,num_epoch, loss.item(), elapsed, expected)
,end="\t\t\t")
time_ = datetime.datetime.now()
print()
eval_result = evaluate(model,val_loader,True,True)
print(eval_result)
scheduler.step(eval_result[0])
if (epoch+1) %1 == 0:
save_model(model, optimizer, scheduler)
我读过关于将验证阶段设为函数有何帮助,因为 python 是函数作用域语言。
所以 evaluate() 是
def evaluate(model, val_loader, get_acc = True, get_IOU = True):
"""
pred: Tensor of shape B C D H W
label Tensor of shape B D H W
"""
val_loss = 0
val_acc = 0
val_IOU = 0
with torch.no_grad():
model.eval()
for data in tqdm(val_loader):
x, y = data
x = x.to(device).view(x.shape[0],1,*(x.shape[1:]))
y = y.to(device).long()
pred = model.forward(x)
loss = loss_fn(pred,y)
val_loss += loss.item()
pred = torch.argmax(pred, dim=1)
if get_acc:
total = np.prod(y.shape)
total = total if total != 0 else 1
val_acc += torch.sum((pred == y)).cpu().item()/total
if get_IOU:
iou = 0
for class_num in range(1,8):
iou += torch.sum((pred==class_num)&(y==class_num)).cpu().item()\
/ torch.sum((pred==class_num)|(y==class_num)).cpu().item()
val_IOU += iou/7
val_loss /= len(val_loader)
val_acc /= len(val_loader)
val_IOU /= len(val_loader)
return (val_loss, val_acc, val_IOU)
最佳答案
分配 GPU 内存很慢。 PyTorch 保留它分配的 GPU 内存,即使没有更多张量引用该内存。您可以调用 torch.cuda.empty_cache()
来释放任何不可访问的 GPU 内存。
关于pytorch - 验证阶段完成后gpu内存仍然被占用,pytorch,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73643887/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!