gpt4 book ai didi

matplotlib - 如何在 matplotlib 中绘制 polar hist2d/hexbin?

转载 作者:行者123 更新时间:2023-12-05 05:22:11 24 4
gpt4 key购买 nike

我有一个随机向量(随机长度和随机角度),想通过 hist2dhexbin 绘制它的近似 PDF(概率密度函数)。不幸的是,它们似乎不适用于极坐标图,以下代码没有产生任何结果:

import numpy as np
import matplotlib.pyplot as plt

# Generate random data:
N = 1024
r = .5 + np.random.normal(size=N, scale=.1)
theta = np.pi / 2 + np.random.normal(size=N, scale=.1)

# Plot:
ax = plt.subplot(111, polar=True)
ax.hist2d(theta, r)
plt.savefig('foo.png')
plt.close()

我希望它看起来像这样:pylab_examples example code: hist2d_demo.py仅在极坐标中。到目前为止最接近的结果是彩色散点图为 adviced here :

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

# Generate random data:
N = 1024
r = .5 + np.random.normal(size=N, scale=.1)
theta = np.pi / 2 + np.random.normal(size=N, scale=.1)

# Plot:
ax = plt.subplot(111, polar=True)

# Using approach from:
# https://stackoverflow.com/questions/20105364/how-can-i-make-a-scatter-plot-colored-by-density-in-matplotlib
theta_r = np.vstack([theta,r])
z = gaussian_kde(theta_r)(theta_r)

ax.scatter(theta, r, c=z, s=10, edgecolor='')

plt.savefig('foo.png')
plt.close()

Image from the second version of the code

有没有更好的方法让它更像用 hist2d 生成的真实 PDF? This question似乎是相关的(结果图像符合预期),但看起来很乱。

最佳答案

一种方法是使用 pcolormesh :

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

# Generate random data:
N = 10000
r = .5 + np.random.normal(size=N, scale=.1)
theta = np.pi / 2 + np.random.normal(size=N, scale=.1)


# Histogramming
nr = 50
ntheta = 200
r_edges = np.linspace(0, 1, nr + 1)
theta_edges = np.linspace(0, 2*np.pi, ntheta + 1)
H, _, _ = np.histogram2d(r, theta, [r_edges, theta_edges])

# Plot
ax = plt.subplot(111, polar=True)
Theta, R = np.meshgrid(theta_edges, r_edges)
ax.pcolormesh(Theta, R, H)
plt.show()

结果:

enter image description here

请注意,直方图尚未根据 bin 的面积进行归一化,这在极坐标中不是常数。靠近原点,bins 非常小,因此一些其他类型的网格划分可能会更好。

关于matplotlib - 如何在 matplotlib 中绘制 polar hist2d/hexbin?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41198154/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com