gpt4 book ai didi

scala - 按时间戳排序不适用于 Scala Spark 中的日期时间列

转载 作者:行者123 更新时间:2023-12-05 05:17:00 26 4
gpt4 key购买 nike

这是我的数据框

+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+------------+
|DataPartition|TimeStamp |OrganizationID|SourceID|AuditorID|AuditorEnumerationId|AuditorOpinionCode|AuditorOpinionId|AuditorOpinionOnInternalControlsId|IsPlayingAuditorRole|IsPlayingCSRAuditorRole|IsPlayingTaxAdvisorRole|FFAction|!||AuditorOpinionOnInternalControlCode|AuditorOpinionOnGoingConcernCode|AuditorOpinionOnGoingConcernId|tobefiltered|
+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+------------+
|Japan |2018-04-04T09:53:35+00:00|4295877275 |181 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |O|!| |
|Japan |2018-04-04T08:36:57+00:00|4295877275 |189 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |O|!| |
|Japan |2018-04-04T08:39:19+00:00|4295877275 |173 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |O|!| |
|Japan |2018-04-04T08:24:17+00:00|4295877275 |196 |5913 |3026579 |UWE |3010547 |null |true |false |false |I|!| |null |null |null |I|!| |
|Japan |2018-04-04T08:24:17+00:00|4295877275 |196 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |I|!| |null |null |null |I|!| |
|Japan |2018-04-04T09:53:35+00:00|4295877275 |196 |null |null |null |null |null |null |null |null |D|!| |null |null |null |I|!| |
+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+------------+

这就是我正在做的,以便根据两列获取最新信息:

val windowSpec3 = Window.partitionBy("OrganizationID", "SourceID").orderBy(unix_timestamp($"TimeStamp", "yyyy-MM-dd HH:mm:ss.SSS").cast("timestamp").desc)
val latestForEachKey3 = latestForEachKey.withColumn("rank", row_number.over(windowSpec3)).filter($"rank" === 1).drop("rank").drop("tobefiltered", "TimeStamp")
latestForEachKey3.show(false)

这给了我下面的输出

+-------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+
|DataPartition|OrganizationID|SourceID|AuditorID|AuditorEnumerationId|AuditorOpinionCode|AuditorOpinionId|AuditorOpinionOnInternalControlsId|IsPlayingAuditorRole|IsPlayingCSRAuditorRole|IsPlayingTaxAdvisorRole|FFAction|!||AuditorOpinionOnInternalControlCode|AuditorOpinionOnGoingConcernCode|AuditorOpinionOnGoingConcernId|
+-------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+
|Japan |4295877275 |181 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |
|Japan |4295877275 |189 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |
|Japan |4295877275 |173 |3185 |3023399 |UNQ |3010546 |3010546 |true |false |false |O|!| |null |null |null |
|Japan |4295877275 |196 |5913 |3026579 |UWE |3010547 |null |true |false |false |I|!| |null |null |null |
+-------------+--------------+--------+---------+--------------------+------------------+----------------+----------------------------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+------------------------------+

因此,根据登录信息,我应该从三个相同的行中获取具有以下时间戳的行。

2018-04-04T09:53:35+00:00|4295877275    |196     |null     |null                

问题是,我也得到了排名但是 .orderBy(unix_timestamp($"TimeStamp", "yyyy-MM-dd HH:mm:ss.SSS").cast("timestamp").desc) 无法正常工作。

我也尝试使用这种数据格式,但结果相同 YYYY-MM-DDThh:mm:ssTZD

最佳答案

使用的时间戳格式错误

代替

"yyyy-MM-dd HH:mm:ss.SSS"

使用

"yyyy-MM-dd'T'HH:mm:ss"

关于scala - 按时间戳排序不适用于 Scala Spark 中的日期时间列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49664697/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com