- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试为我的数据集的每个分区拟合一个 ML 模型,但我不知道如何在 Spark 中执行此操作。
我的数据集基本上看起来像这样并且按公司划分:
Company | Features | Target
A xxx 0.9
A xxx 0.8
A xxx 1.0
B xxx 1.2
B xxx 1.0
B xxx 0.9
C xxx 0.7
C xxx 0.9
C xxx 0.9
我的目标是以并行方式为每家公司训练一个回归器(我有几亿条记录,有 10 万家公司)。我的直觉是我需要使用 foreachPartition
来并行处理分区(即我的公司)并训练和保存每个公司模型。 我的主要问题是如何处理 foreachPartition
调用的函数中要使用的 iterator
类型。
这是它的样子:
dd.foreachPartition(
iterator => {var company_df = operator.toDF()
var rg = RandomForestRegressor()
.setLabelCol("target")
.setFeaturesCol("features")
.setNumTrees(10)
var model = rg.fit(company_df)
model.write.save(company_path)
}
)
据我了解,尝试将 iterator
转换为 dataframe
是不可能的,因为 RDD 的概念本身不能存在于 foreachPartition 中
语句。
我知道这个问题很开放,但我真的卡住了。
最佳答案
在 pyspark 中你可以做如下的事情
import statsmodels.api as sm
# df has four columns: id, y, x1, x2
group_column = 'id'
y_column = 'y'
x_columns = ['x1', 'x2']
schema = df.select(group_column, *x_columns).schema
@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
# Input/output are both a pandas.DataFrame
def ols(pdf):
group_key = pdf[group_column].iloc[0]
y = pdf[y_column]
X = pdf[x_columns]
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
return pd.DataFrame([[group_key] + [model.params[i] for i in x_columns]], columns=[group_column] + x_columns)
beta = df.groupby(group_column).apply(ols)
关于scala - 如何使用 foreachPartition 在 Spark 中为每个分区高效构建一个 ML 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58592081/
如何将运算符传递给 ML 中的函数?例如,考虑这个伪代码: function (int a, int b, operator op) return a op b 这里,运算符可以是 op +
我尝试在 Google Cloud ML 上运行来自 github 的 word-RNN 模型。提交作业后,我在日志文件中收到错误。 这是我提交的训练内容 gcloud ml-engine jobs
在 a.ml 中定义了一个记录类型 t 并且也是透明地定义的 在 a.mli 中,即在 d 接口(interface)中,以便类型定义可用 到所有其他文件。 a.ml 还有一个函数 func,它返回一
关闭 ML.NET 模型生成器后,是否可以为创建的模型重新打开它? 我可以删除创建的模型并重新开始,但这并不理想。 最佳答案 不,不是真的。 AutoML/Model Builder 可以生成代码并将
我有一个关于训练可以预测名称是否为女性的 ML.NET 的问题。该模型可以使用这样的管道进行训练: var mlContext = new MLContext(); IDataView trainin
我在 ASP.NET Core 应用程序中使用 ML.NET,并在 Startup 中使用以下代码: var builder = services.AddPredictionEnginePool();
我使用 sklearn 创建了一个模型进行分类。当我调用函数 y_pred2 = clf.predict (features2) 时,它会返回一个包含我的预测的所有 id 的列表 y_pred2 =
我已向 cloud ml 提交了训练作业。但是,它找不到 csv 文件。它就在桶里。这是代码。 # Use scikit-learn to grid search the batch size and
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
为什么我尝试将经过训练的模型部署到 Google Cloud ML,却收到以下错误: Create Version failed.Model validation failed: Model meta
我是 Azure Databricks 的新手,尽管我在 Databricks 方面有很好的经验,但仅限于 Data Engg 方面。我对 Databricks Runtime ML 和 ML Flo
我是 Azure ML 新手。我有一些疑问。有人可以澄清下面列出的我的疑问吗? Azure ML 服务与 Azure ML 实验服务之间有什么区别。 Azure ML 工作台和 Azure ML St
我的 Cloud ML 训练作业已完成,输出如下: "consumedMLUnits": 43.24 我如何使用此信息来确定培训工作的成本?我无法在以下两个选项之间做出决定: 1)根据这个page ,
docs for setting up Google Cloud ML建议安装 Tensorflow 版本 r0.11。我观察到 r0.12 中新提供的 TensorFlow 函数在 Cloud ML
我正在关注一个来自 - https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#multinomial-logist
我想使用 mosmlc 将我的 ML 程序编译成可执行二进制文件。但是,我找不到太多关于如何操作的信息。 我想编译的代码在这里http://people.pwf.cam.ac.uk/bt288/tic
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
假设我有两个 Azure ML 工作区: Workspace1 - 由一个团队(Team1)使用,该团队仅训练模型并将模型存储在 Workspace1 的模型注册表中 Workspace2 - 由另一
我尝试使用以下命令行在 Azure 上的 Linux(Ubuntu) 数据科学虚拟机上设置我的 Azure 机器学习环境: az ml 环境设置 但是,它显示错误为加载命令模块 ml 时出错。一直在谷
我是一名优秀的程序员,十分优秀!