gpt4 book ai didi

scala - 如何使用 foreachPartition 在 Spark 中为每个分区高效构建一个 ML 模型?

转载 作者:行者123 更新时间:2023-12-05 05:08:03 24 4
gpt4 key购买 nike

我正在尝试为我的数据集的每个分区拟合一个 ML 模型,但我不知道如何在 Spark 中执行此操作。

我的数据集基本上看起来像这样并且按公司划分:

Company | Features | Target

A xxx 0.9
A xxx 0.8
A xxx 1.0
B xxx 1.2
B xxx 1.0
B xxx 0.9
C xxx 0.7
C xxx 0.9
C xxx 0.9

我的目标是以并行方式为每家公司训练一个回归器(我有几亿条记录,有 10 万家公司)。我的直觉是我需要使用 foreachPartition 来并行处理分区(即我的公司)并训练和保存每个公司模型。 我的主要问题是如何处理 foreachPartition 调用的函数中要使用的 iterator 类型。

这是它的样子:

dd.foreachPartition(

iterator => {var company_df = operator.toDF()
var rg = RandomForestRegressor()
.setLabelCol("target")
.setFeaturesCol("features")
.setNumTrees(10)
var model = rg.fit(company_df)
model.write.save(company_path)
}
)

据我了解,尝试将 iterator 转换为 dataframe 是不可能的,因为 RDD 的概念本身不能存在于 foreachPartition 中 语句。

我知道这个问题很开放,但我真的卡住了。

最佳答案

在 pyspark 中你可以做如下的事情

import statsmodels.api as sm
# df has four columns: id, y, x1, x2

group_column = 'id'
y_column = 'y'
x_columns = ['x1', 'x2']
schema = df.select(group_column, *x_columns).schema

@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
# Input/output are both a pandas.DataFrame
def ols(pdf):
group_key = pdf[group_column].iloc[0]
y = pdf[y_column]
X = pdf[x_columns]
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()

return pd.DataFrame([[group_key] + [model.params[i] for i in x_columns]], columns=[group_column] + x_columns)

beta = df.groupby(group_column).apply(ols)

关于scala - 如何使用 foreachPartition 在 Spark 中为每个分区高效构建一个 ML 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58592081/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com