gpt4 book ai didi

python - 将透明图像导入 GAN

转载 作者:行者123 更新时间:2023-12-05 04:46:16 27 4
gpt4 key购买 nike

我设置了具有透明度的图像。

我正在尝试训练 GAN(生成对抗网络)。

如何保持透明度。我可以从输出图像中看到所有透明区域都是黑色的。

我怎样才能避免这样做?

我认为这叫做“阿尔法 channel ”。

无论如何,我怎样才能保持透明度?

下面是我的代码。

   # Importing the libraries
from __future__ import print_function
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from generator import G
from discriminator import D
import os

batchSize = 64 # We set the size of the batch.
imageSize = 64 # We set the size of the generated images (64x64).
input_vector = 100
nb_epochs = 500
# Creating the transformations
transform = transforms.Compose([transforms.Resize((imageSize, imageSize)), transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5,
0.5)), ]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images.

# Loading the dataset
dataset = dset.ImageFolder(root='./data', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batchSize, shuffle=True,
num_workers=2) # We use dataLoader to get the images of the training set batch by batch.


# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)


def is_cuda_available():
return torch.cuda.is_available()


def is_gpu_available():
if is_cuda_available():
if int(torch.cuda.device_count()) > 0:
return True
return False
return False


# Create results directory
def create_dir(name):
if not os.path.exists(name):
os.makedirs(name)


# Creating the generator
netG = G(input_vector)
netG.apply(weights_init)

# Creating the discriminator
netD = D()
netD.apply(weights_init)

if is_gpu_available():
netG.cuda()
netD.cuda()

# Training the DCGANs

criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))

generator_model = 'generator_model'
discriminator_model = 'discriminator_model'


def save_model(epoch, model, optimizer, error, filepath, noise=None):
if os.path.exists(filepath):
os.remove(filepath)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': error,
'noise': noise
}, filepath)


def load_checkpoint(filepath):
if os.path.exists(filepath):
return torch.load(filepath)
return None

def main():
print("Device name : " + torch.cuda.get_device_name(0))
for epoch in range(nb_epochs):

for i, data in enumerate(dataloader, 0):
checkpointG = load_checkpoint(generator_model)
checkpointD = load_checkpoint(discriminator_model)
if checkpointG:
netG.load_state_dict(checkpointG['model_state_dict'])
optimizerG.load_state_dict(checkpointG['optimizer_state_dict'])
if checkpointD:
netD.load_state_dict(checkpointD['model_state_dict'])
optimizerD.load_state_dict(checkpointD['optimizer_state_dict'])

# 1st Step: Updating the weights of the neural network of the discriminator

netD.zero_grad()

# Training the discriminator with a real image of the dataset
real, _ = data
if is_gpu_available():
input = Variable(real.cuda()).cuda()
target = Variable(torch.ones(input.size()[0]).cuda()).cuda()
else:
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = netD(input)
errD_real = criterion(output, target)

# Training the discriminator with a fake image generated by the generator
if is_gpu_available():
noise = Variable(torch.randn(input.size()[0], input_vector, 1, 1)).cuda()
target = Variable(torch.zeros(input.size()[0])).cuda()
else:
noise = Variable(torch.randn(input.size()[0], input_vector, 1, 1))
target = Variable(torch.zeros(input.size()[0]))
fake = netG(noise)
output = netD(fake.detach())
errD_fake = criterion(output, target)

# Backpropagating the total error
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()

# 2nd Step: Updating the weights of the neural network of the generator
netG.zero_grad()
if is_gpu_available():
target = Variable(torch.ones(input.size()[0])).cuda()
else:
target = Variable(torch.ones(input.size()[0]))
output = netD(fake)
errG = criterion(output, target)
errG.backward()
optimizerG.step()

# 3rd Step: Printing the losses and saving the real images and the generated images of the minibatch every 100 steps

print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, nb_epochs, i, len(dataloader), errD.data, errG.data))
save_model(epoch, netG, optimizerG, errG, generator_model, noise)
save_model(epoch, netD, optimizerD, errD, discriminator_model, noise)

if i % 100 == 0:
create_dir('results')
vutils.save_image(real, '%s/real_samples.png' % "./results", normalize=True)
fake = netG(noise)
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True)


if __name__ == "__main__":
main()

生成器.py

将 torch.nn 导入为 nnG类(nn.Module):feature_maps = 512kernel_size = 4步幅 = 2填充 = 1偏差=假

def __init__(self, input_vector):
super(G, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(input_vector, self.feature_maps, self.kernel_size, 1, 0, bias=self.bias),
nn.BatchNorm2d(self.feature_maps), nn.ReLU(True),
nn.ConvTranspose2d(self.feature_maps, int(self.feature_maps // 2), self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(int(self.feature_maps // 2)), nn.ReLU(True),
nn.ConvTranspose2d(int(self.feature_maps // 2), int((self.feature_maps // 2) // 2), self.kernel_size, self.stride,
self.padding,
bias=self.bias),
nn.BatchNorm2d(int((self.feature_maps // 2) // 2)), nn.ReLU(True),
nn.ConvTranspose2d((int((self.feature_maps // 2) // 2)), int(((self.feature_maps // 2) // 2) // 2), self.kernel_size,
self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(int((self.feature_maps // 2) // 2) // 2), nn.ReLU(True),
nn.ConvTranspose2d(int(((self.feature_maps // 2) // 2) // 2), 4, self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.Tanh()
)

def forward(self, input):
output = self.main(input)
return output

鉴别器.py

import torch.nn as nn
class D(nn.Module):
feature_maps = 64
kernel_size = 4
stride = 2
padding = 1
bias = False
inplace = True

def __init__(self):
super(D, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(4, self.feature_maps, self.kernel_size, self.stride, self.padding, bias=self.bias),
nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps, self.feature_maps * 2, self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(self.feature_maps * 2), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * 2, self.feature_maps * (2 * 2), self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(self.feature_maps * (2 * 2)), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * (2 * 2), self.feature_maps * (2 * 2 * 2), self.kernel_size, self.stride,
self.padding, bias=self.bias),
nn.BatchNorm2d(self.feature_maps * (2 * 2 * 2)), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * (2 * 2 * 2), 1, self.kernel_size, 1, 0, bias=self.bias),
nn.Sigmoid()
)

def forward(self, input):
output = self.main(input)
return output.view(-1)

最佳答案

使用 dset.ImageFolder , 没有明确定义读取图像的函数 (loader) 使用默认的 pil_loader 数据集结果:

def pil_loader(path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')

如您所见,默认加载器丢弃 alpha channel 并强制图像只有三个颜色 channel :RGB。

您可以定义自己的加载器:

def pil_loader_rgba(path: str) -> Image.Image:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGBA') # force alpha channel

您可以在数据集中使用此加载器:

dataset = dset.ImageFolder(root='./data', transform=transform, loader=pil_loader_rgba)

现在您的图像将具有 alpha channel 。

请注意,透明度(“alpha channel ”)是一个附加 channel ,不是 RGB channel 的一部分。您需要确保您的模型知道如何处理 4 channel 输入,否则,您将遇到诸如 this 之类的错误。 .

关于python - 将透明图像导入 GAN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68888375/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com