- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我设置了具有透明度的图像。
我正在尝试训练 GAN(生成对抗网络)。
如何保持透明度。我可以从输出图像中看到所有透明区域都是黑色的。
我怎样才能避免这样做?
我认为这叫做“阿尔法 channel ”。
无论如何,我怎样才能保持透明度?
下面是我的代码。
# Importing the libraries
from __future__ import print_function
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from generator import G
from discriminator import D
import os
batchSize = 64 # We set the size of the batch.
imageSize = 64 # We set the size of the generated images (64x64).
input_vector = 100
nb_epochs = 500
# Creating the transformations
transform = transforms.Compose([transforms.Resize((imageSize, imageSize)), transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5,
0.5)), ]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images.
# Loading the dataset
dataset = dset.ImageFolder(root='./data', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batchSize, shuffle=True,
num_workers=2) # We use dataLoader to get the images of the training set batch by batch.
# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def is_cuda_available():
return torch.cuda.is_available()
def is_gpu_available():
if is_cuda_available():
if int(torch.cuda.device_count()) > 0:
return True
return False
return False
# Create results directory
def create_dir(name):
if not os.path.exists(name):
os.makedirs(name)
# Creating the generator
netG = G(input_vector)
netG.apply(weights_init)
# Creating the discriminator
netD = D()
netD.apply(weights_init)
if is_gpu_available():
netG.cuda()
netD.cuda()
# Training the DCGANs
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999))
generator_model = 'generator_model'
discriminator_model = 'discriminator_model'
def save_model(epoch, model, optimizer, error, filepath, noise=None):
if os.path.exists(filepath):
os.remove(filepath)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': error,
'noise': noise
}, filepath)
def load_checkpoint(filepath):
if os.path.exists(filepath):
return torch.load(filepath)
return None
def main():
print("Device name : " + torch.cuda.get_device_name(0))
for epoch in range(nb_epochs):
for i, data in enumerate(dataloader, 0):
checkpointG = load_checkpoint(generator_model)
checkpointD = load_checkpoint(discriminator_model)
if checkpointG:
netG.load_state_dict(checkpointG['model_state_dict'])
optimizerG.load_state_dict(checkpointG['optimizer_state_dict'])
if checkpointD:
netD.load_state_dict(checkpointD['model_state_dict'])
optimizerD.load_state_dict(checkpointD['optimizer_state_dict'])
# 1st Step: Updating the weights of the neural network of the discriminator
netD.zero_grad()
# Training the discriminator with a real image of the dataset
real, _ = data
if is_gpu_available():
input = Variable(real.cuda()).cuda()
target = Variable(torch.ones(input.size()[0]).cuda()).cuda()
else:
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = netD(input)
errD_real = criterion(output, target)
# Training the discriminator with a fake image generated by the generator
if is_gpu_available():
noise = Variable(torch.randn(input.size()[0], input_vector, 1, 1)).cuda()
target = Variable(torch.zeros(input.size()[0])).cuda()
else:
noise = Variable(torch.randn(input.size()[0], input_vector, 1, 1))
target = Variable(torch.zeros(input.size()[0]))
fake = netG(noise)
output = netD(fake.detach())
errD_fake = criterion(output, target)
# Backpropagating the total error
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
# 2nd Step: Updating the weights of the neural network of the generator
netG.zero_grad()
if is_gpu_available():
target = Variable(torch.ones(input.size()[0])).cuda()
else:
target = Variable(torch.ones(input.size()[0]))
output = netD(fake)
errG = criterion(output, target)
errG.backward()
optimizerG.step()
# 3rd Step: Printing the losses and saving the real images and the generated images of the minibatch every 100 steps
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, nb_epochs, i, len(dataloader), errD.data, errG.data))
save_model(epoch, netG, optimizerG, errG, generator_model, noise)
save_model(epoch, netD, optimizerD, errD, discriminator_model, noise)
if i % 100 == 0:
create_dir('results')
vutils.save_image(real, '%s/real_samples.png' % "./results", normalize=True)
fake = netG(noise)
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True)
if __name__ == "__main__":
main()
生成器.py
将 torch.nn 导入为 nnG类(nn.Module):feature_maps = 512kernel_size = 4步幅 = 2填充 = 1偏差=假
def __init__(self, input_vector):
super(G, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(input_vector, self.feature_maps, self.kernel_size, 1, 0, bias=self.bias),
nn.BatchNorm2d(self.feature_maps), nn.ReLU(True),
nn.ConvTranspose2d(self.feature_maps, int(self.feature_maps // 2), self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(int(self.feature_maps // 2)), nn.ReLU(True),
nn.ConvTranspose2d(int(self.feature_maps // 2), int((self.feature_maps // 2) // 2), self.kernel_size, self.stride,
self.padding,
bias=self.bias),
nn.BatchNorm2d(int((self.feature_maps // 2) // 2)), nn.ReLU(True),
nn.ConvTranspose2d((int((self.feature_maps // 2) // 2)), int(((self.feature_maps // 2) // 2) // 2), self.kernel_size,
self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(int((self.feature_maps // 2) // 2) // 2), nn.ReLU(True),
nn.ConvTranspose2d(int(((self.feature_maps // 2) // 2) // 2), 4, self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.Tanh()
)
def forward(self, input):
output = self.main(input)
return output
鉴别器.py
import torch.nn as nn
class D(nn.Module):
feature_maps = 64
kernel_size = 4
stride = 2
padding = 1
bias = False
inplace = True
def __init__(self):
super(D, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(4, self.feature_maps, self.kernel_size, self.stride, self.padding, bias=self.bias),
nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps, self.feature_maps * 2, self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(self.feature_maps * 2), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * 2, self.feature_maps * (2 * 2), self.kernel_size, self.stride, self.padding,
bias=self.bias),
nn.BatchNorm2d(self.feature_maps * (2 * 2)), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * (2 * 2), self.feature_maps * (2 * 2 * 2), self.kernel_size, self.stride,
self.padding, bias=self.bias),
nn.BatchNorm2d(self.feature_maps * (2 * 2 * 2)), nn.LeakyReLU(0.2, inplace=self.inplace),
nn.Conv2d(self.feature_maps * (2 * 2 * 2), 1, self.kernel_size, 1, 0, bias=self.bias),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input)
return output.view(-1)
最佳答案
使用 dset.ImageFolder
, 没有明确定义读取图像的函数 (loader
) 使用默认的 pil_loader
数据集结果:
def pil_loader(path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
如您所见,默认加载器丢弃 alpha channel 并强制图像只有三个颜色 channel :RGB。
您可以定义自己的加载器:
def pil_loader_rgba(path: str) -> Image.Image:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGBA') # force alpha channel
您可以在数据集中使用此加载器:
dataset = dset.ImageFolder(root='./data', transform=transform, loader=pil_loader_rgba)
现在您的图像将具有 alpha channel 。
请注意,透明度(“alpha channel ”)是一个附加 channel ,不是 RGB channel 的一部分。您需要确保您的模型知道如何处理 4 channel 输入,否则,您将遇到诸如 this 之类的错误。 .
关于python - 将透明图像导入 GAN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68888375/
我想禁用我的 UIButton,所以我调用: button.enabled = FALSE; 然而,这会使按钮变得透明,我可以看到它下面的元素。我不介意它改变颜色,我只是不希望它是透明的。 我尝试在
一个常规的 NSButton 如果被禁用,它似乎是透明的。 图像显示了一个样式为“push”的按钮 但是,我想禁用没有透明度的按钮。 我试图以编程方式将 alphaValue 设置为 1.0 但似乎
我正在尝试将Memoji从iPhone/Mac转换为具有透明背景的一系列png,以便我可以创建一个 Sprite 表。当按下空格键时,我可以清楚地看到它具有透明背景,但是在运行 ffmpeg -i s
我想创建一个具有部分透明背景的 View (舞台、窗口)。我有一张包含 Alpha channel 的图像 我在JavaFx中使用了这种场景,我必须将场景填充设置为空,并将根节点背景颜色设置为透明。我
我想创建一个具有部分透明背景的 View (舞台、窗口)。我有一张包含 Alpha channel 的图像 我在JavaFx中使用了这种场景,我必须将场景填充设置为空,并将根节点背景颜色设置为透明。我
我想将 JDesktopPane 设置为透明,并允许我单击下面的内容(例如桌面图标等)。内部框架应保持不透明,并且能够像当前一样在屏幕周围重新定位。有什么想法吗? package test1;
我知道我不是第一个提出此类问题的人,但我认为我的问题有点不同。 我在 MS Paint 上绘制了一个 png 图像,它是一个播放器,当我使用图形对象绘制图像时,我希望图像的背景是透明的。我尝试了一些带
我在 Mac 的 swift 项目中想使用单选按钮,但与我的背景颜色相同。如何将背景设置为不透明或更改背景颜色? 最佳答案 我找到了解决此问题的方法。将单选按钮的文本设置为“”,将 rb 添加到水平堆
我无法将我的相对布局设置为透明。我尝试了很多不同的方法,从类中自定义 View ,添加 android:background="@android:color/transparent"等。它们要么像下图
在 Storyboard中,我创建了一个 ![UINavigationController] 及其 Root View Controller UIViewcontroller。在工具栏中,我有一个分段
我必须让我的导航栏透明,我试过这段代码: self.navigationController?.navigationBar.setBackgroundImage(UIImage(), for: UIB
我注意到,如果我将 View 背景颜色设置为透明,则在 segue 过渡结束后背景颜色会变成黑色(我猜这是默认的“视口(viewport)”颜色)。 我可以改变吗?当然,我可以将颜色从透明更改为紫色,
嘿,有没有可能让滚动条“隐藏”,我不想使用 overflow-y: hidden就像背景:透明或类似的东西 最佳答案 Here您会找到有关如何仅使用 CSS 隐藏滚动条的说明。 在第二个example
默认情况下,背景显示为白色。是否可以通过任何方式将其背景颜色更改为透明..? (function() { var cx = '005519348941191855053:d0uziw7c
我正在尝试添加一个在 div 的左右边缘具有透明度/淡出的嵌入框阴影。我设法添加了一个普通的嵌入框阴影,但我不知道如何为边缘添加透明度。我该怎么做? 这是我正在努力实现的一个例子。 .contai
如何删除 周围的边框并使其背景透明? 最佳答案 试试这个: border: none; border-color: transparent; 关于html - 透明、无边框的文本输入,我们在Stac
是否可以使 JButton 透明(包括边框)而不是文本?我扩展了 swing 的 JButton 并覆盖了它: @Override public void paint(Graphics g) {
众所周知,要使QWidget/QOpenGLWidget半透明/透明,只需: widget->setAttribute(Qt::WA_TranslucentBackground) 但是,由于 QWin
我想知道如何在 Ubuntu 中为所有应用程序制作透明 Gnome 终端,我知道我们可以为桌面制作透明终端,而不是为所有应用程序制作透明终端。我用谷歌搜索了很多,但找不到任何解决方案。谁能告诉我该怎么
我想让 SWT Canvas 的背景透明,以便可以看到它后面的其他小部件。 我尝试将 alpha 设置为 0 并用矩形填充 Canvas ,并且还使用选项 SWT.NO_BACKGROUND 无济于事
我是一名优秀的程序员,十分优秀!