- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我一直在尝试在我的 HPC 上安装带有 Cuda(最好是 11)的 PyTorch 1.9,但我做不到。
集群说:
Package typing-extensions conflicts for:
typing-extensions
torchvision -> pytorch==1.8.1 -> typing-extensionsThe following specifications were found to be incompatible with your system:
- feature:/linux-64::__glibc==2.17=0
- feature:|@/linux-64::__glibc==2.17=0
- cffi -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- cudatoolkit=11.0 -> __glibc[version='>=2.17,<3.0.a0']
- cudatoolkit=11.0 -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- freetype -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- jpeg -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- lcms2 -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- libffi -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- libgcc-ng -> __glibc[version='>=2.17']
- libmklml -> libgcc-ng -> __glibc[version='>=2.17']
- libpng -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- libstdcxx-ng -> __glibc[version='>=2.17']
- libtiff -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- libwebp-base -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- lz4-c -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- mkl-service -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- mkl_fft -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- mkl_random -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- ncurses -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- ninja -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- numpy -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- numpy-base -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- openjpeg -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- openssl -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- pillow -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- python=3.9 -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- pytorch==1.9 -> cudatoolkit[version='>=11.1,<11.2'] -> __glibc[version='>=2.17,<3.0.a0']
- readline -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- sqlite -> libgcc-ng[version='>=7.5.0'] -> __glibc[version='>=2.17']
- tk -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- torchvision -> cudatoolkit[version='>=11.1,<11.2'] -> __glibc[version='>=2.17|>=2.17,<3.0.a0']
- xz -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- zlib -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
- zstd -> libgcc-ng[version='>=7.3.0'] -> __glibc[version='>=2.17']
Your installed version is: 2.17
但我不明白如何使用该信息来安装它。我可以为系统管理员做些什么吗?
当我尝试使用 conda 安装它时,我收到一条消息,告诉我它已经安装。然而,conda list greps 显示版本只是 CPU,不是 GPU:
(metalearning_gpu) miranda9~/automl-meta-learning $ conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
Collecting package metadata (current_repodata.json): done
Solving environment: done
# All requested packages already installed.
(metalearning_gpu) miranda9~/automl-meta-learning $
(metalearning_gpu) miranda9~/automl-meta-learning $ conda list | grep torch
cpuonly 1.0 0 pytorch
ffmpeg 4.3 hf484d3e_0 pytorch
pytorch 1.9.0 py3.9_cpu_0 [cpuonly] pytorch
torch 1.9.0+cpu pypi_0 pypi
torchaudio 0.9.0 pypi_0 pypi
torchmeta 1.7.0 pypi_0 pypi
torchvision 0.10.0+cpu pypi_0 pypi
尝试使用 pip 安装它完全失败:
(metalearning_gpu) miranda9~/automl-meta-learning $ pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.9.0+cu111
ERROR: Exception:
Traceback (most recent call last):
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/cli/base_command.py", line 173, in _main
status = self.run(options, args)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/cli/req_command.py", line 203, in wrapper
return func(self, options, args)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/commands/install.py", line 315, in run
requirement_set = resolver.resolve(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/resolver.py", line 94, in resolve
result = self._result = resolver.resolve(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/resolvelib/resolvers.py", line 472, in resolve
state = resolution.resolve(requirements, max_rounds=max_rounds)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/resolvelib/resolvers.py", line 341, in resolve
self._add_to_criteria(self.state.criteria, r, parent=None)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/resolvelib/resolvers.py", line 172, in _add_to_criteria
if not criterion.candidates:
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/resolvelib/structs.py", line 151, in __bool__
return bool(self._sequence)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py", line 140, in __bool__
return any(self)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py", line 128, in <genexpr>
return (c for c in iterator if id(c) not in self._incompatible_ids)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py", line 32, in _iter_built
candidate = func()
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/factory.py", line 204, in _make_candidate_from_link
self._link_candidate_cache[link] = LinkCandidate(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/candidates.py", line 295, in __init__
super().__init__(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/candidates.py", line 156, in __init__
self.dist = self._prepare()
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/candidates.py", line 227, in _prepare
dist = self._prepare_distribution()
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/resolution/resolvelib/candidates.py", line 305, in _prepare_distribution
return self._factory.preparer.prepare_linked_requirement(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/operations/prepare.py", line 508, in prepare_linked_requirement
return self._prepare_linked_requirement(req, parallel_builds)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/operations/prepare.py", line 550, in _prepare_linked_requirement
local_file = unpack_url(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/operations/prepare.py", line 239, in unpack_url
file = get_http_url(
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/operations/prepare.py", line 102, in get_http_url
from_path, content_type = download(link, temp_dir.path)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/network/download.py", line 132, in __call__
resp = _http_get_download(self._session, link)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/network/download.py", line 115, in _http_get_download
resp = session.get(target_url, headers=HEADERS, stream=True)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/requests/sessions.py", line 555, in get
return self.request('GET', url, **kwargs)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/network/session.py", line 454, in request
return super().request(method, url, *args, **kwargs)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/requests/sessions.py", line 542, in request
resp = self.send(prep, **send_kwargs)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/requests/sessions.py", line 655, in send
r = adapter.send(request, **kwargs)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/cachecontrol/adapter.py", line 44, in send
cached_response = self.controller.cached_request(request)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_vendor/cachecontrol/controller.py", line 139, in cached_request
cache_data = self.cache.get(cache_url)
File "/home/miranda9/miniconda3/envs/metalearning_gpu/lib/python3.9/site-packages/pip/_internal/network/cache.py", line 54, in get
return f.read()
MemoryError
当前安装脚本:
## Installation script
# to install do: bash ~/automl-meta-learning/install.sh
#conda update conda
#conda create -y -n metalearning_gpu python=3.9
#conda activate metalearning_gpu
#conda remove --name metalearning_gpu --all
module load cuda-toolkit/11.1
module load gcc/9.2.0
# A40, needs cuda at least 11.0, but 1.9 requires 11
conda activate metalearning_gpu
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
#conda activate metalearning_cpu
#conda install pytorch torchvision torchaudio cpuonly -c pytorch
#pip3 install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
# uutils installs
conda install -y dill
conda install -y networkx>=2.5
conda install -y scipy
conda install -y scikit-learn
conda install -y lark-parser -c conda-forge
# due to compatibility with torch=1.7.x, https://stackoverflow.com/questions/65575871/torchtext-importerror-in-colab
#conda install -y torchtext==0.8.0 -c pytorch
conda install -y tensorboard
conda install -y pandas
conda install -y progressbar2
conda install -y transformers
conda install -y requests
conda install -y aiohttp
conda install -y numpy
conda install -y plotly
conda install -y matplotlib
pip install wandb
# for automl
conda install -y pyyml
conda install -y torchviz
#conda install -y graphviz
#pip install tensorflow
#pip install learn2learn
#pip install -U git+https://github.com/brando90/pytorch-meta.git
#pip install --no-deps torchmeta==1.6.1
pip install --no-deps torchmeta==1.7.0
# 'torch>=1.4.0,<1.9.0',
# 'torchvision>=0.5.0,<0.10.0',
#pip install -y numpy
pip install Pillow
pip install h5py
#pip install requests
pip install ordered-set
pip install higher
# 'torch'
#pip install -U git+https://github.com/moskomule/anatome
pip install --no-deps -U git+https://github.com/moskomule/anatome
# 'torch>=1.9.0',
# 'torchvision>=0.10.0',
pip install tqdm
# - using conda develop rather than pip because uutils installs incompatible versions with the vision cluster
## python -c "import sys; [print(p) for p in sys.path]"
conda install conda-build
# conda develop ~/ultimate-utils/ultimate-utils-proj-src
# conda develop ~/automl-meta-learning/automl-proj-src
# pip install ultimate-utils
# -- extra notes
# local editable installs
# HAL installs, make sure to clone from wmlce 1.7.0 that has h5py ~= 2.9.0 and torch 1.3.1 and torchvision 0.4.2
# pip install torchmeta==1.3.1
最佳答案
首先,按照@Francois 的建议,尝试卸载 CPU only 版本的 pytorch。同样在您的安装脚本中,您应该使用 conda
或 pip3
。
那么您可能想尝试以下尝试:
conda
:将 conda-forge
channel 添加到您的命令中(conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia -c conda-伪造
)。并确保 conda
已更新。pip
:将 --no-cache-dir
插入到你的命令中(pip3 --no-cache-dir install torch==1.9.0 +cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
) 以避免 MemoryError
。 关于python - 如何在似乎拒绝合作的 HPC 中安装 pytorch 1.9?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/69230502/
我听说最好不要从您系统的 Perl 版本所在的 CPAN 安装模块。我知道如何使用命令行安装模块,我只是想知道是否有办法将 CPAN 与系统核心 Perl 分开。 我应该: 下载源代码并专门为这些模块
我听说最好不要从系统的 Perl 版本所在的 CPAN 安装模块。我知道如何使用命令行安装模块,我只是想知道是否有办法将 CPAN 与系统的核心 Perl 分开。 我应该: 下载源代码并专门为这些模块
单独安装 electron 与通过 electron-builder 安装有什么区别?我正在使用 React 构建一个 Electron 应用程序,并且已经找到了一些教程。它们安装 Electron
两者安装有什么区别?我按照安装页面上的说明在全局范围内安装了 webpack,然后我转到了入门指南,据说在那里可以在本地安装 webpack-cli。 CLI = Command Line Inter
我在 OS X Yosemite 上用 PHP 安装了默认的 Apache 服务器,安装了 pear,用 brew 安装了 Solr (brew install solr),现在我正在尝试使用 PEC
我解压并编译了 Ruby 2.1 并安装了几个支持工具。 但是当我安装了 libssl-dev 时,OpenSSL 不会安装。 我在支持 openssl 时遇到这个错误: make: *** No r
我在 android studio 2.3.1 和 gradle 3.2 中设计了 2 到 3 个应用程序。当我从它运行应用程序到任何设备或模拟器时,一切都工作正常。但是当我从构建文件夹中获取该 ap
我注意到我正在读一本书提到通过 apt-get 安装 numpy 和 opencv apt-get install python-numpy python-opencv 但我可以通过以下方式在 pip
我正在尝试在 Windows 8.1 上安装 ansicon。我提取了文件并达到了我需要调用 ansicon -i 的级别。当我在 cmd 中输入此内容并运行 python 脚本时效果很好,但是当我通
我有 linux MINT 17.3 Kernel 4.4.0-81 所有更新可用。 (由于不同的原因,我无法迁移到更新版本的 ubuntu/mint) 我已经通过 PPA 安装了 FFMPEG(不是
尝试在本地运行我的应用程序时出现错误: 我只在 chrome 浏览器中收到此错误。我尝试过不同的东西,但我不确定为什么它是 Chrome 特定的。 最佳答案 我怀疑这不是 Firebase 问题,而是
这是我第一次开发 AngularJS 应用程序并使用脚手架工具 Yeoman ( http://yeoman.io/ )。我想对我的一些图标使用 fontawesome ( http://fortaw
我知道您通常“应该”$ pip install 如果包没有 brew ,但如果有一个你想安装的 python 包,你可以使用 $ pip install或 $ brew install为了?例如,通过
我正在尝试通过 RVM 安装 Ruby 1.9.3。然而,当谈到安装 RubyGems 时,我得到了这个: curl: (22) The requested URL returned error: 4
我是真正提出问题的新手,但你去吧。 我一直在尝试按照安装指南添加 dnsname: https://github.com/containers/dnsname https://github.com/c
Studio更新至0.4.0 建筑产量为“需要1.8版Gradle”;将设置设置为1.8 bin目录; 建立 “要求1.9级”;将设置设置为1.9 bin; 建立 “要求1.8级” 啊。不知道该怎么做
我刚刚注意到 kernel.org 因维护而停机。是否有使用不同镜子的不同公式?或者我可以向 Homebrew 软件添加不同的来源(如 bundler ?)? 谢谢你的帮助! 最佳答案 快速解决方法:
当我运行时: peardev install phpunit/PHPUnit 我得到以下信息: No releases available for package "pear.phpunit.de/P
服务器操作系统为Fedora 24. 64bit。 我想安装 Git 2.6.6。 所以下载源码并安装。 此服务器离线。所以我不使用“yum”。 ./configure --prefix=/usr/l
我正在尝试在我自己的服务器(操作系统:Linux Ubuntu Server 12.04)上安装 OpenEdX,但我遇到了同样的错误。谁能帮帮我? TASK: [ insights | insta
我是一名优秀的程序员,十分优秀!