- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试更好地了解梯度累积的工作原理及其有用的原因。为此,我想问一下这两种可能的具有梯度累积的自定义训练循环的类似 PyTorch 的实现之间有什么区别(如果有的话):
gradient_accumulation_steps = 5
for batch_idx, batch in enumerate(dataset):
x_batch, y_true_batch = batch
y_pred_batch = model(x_batch)
loss = loss_fn(y_true_batch, y_pred_batch)
loss.backward()
if (batch_idx + 1) % gradient_accumulation_steps == 0: # (assumption: the number of batches is a multiple of gradient_accumulation_steps)
optimizer.step()
optimizer.zero_grad()
y_true_batches, y_pred_batches = [], []
gradient_accumulation_steps = 5
for batch_idx, batch in enumerate(dataset):
x_batch, y_true_batch = batch
y_pred_batch = model(x_batch)
y_true_batches.append(y_true_batch)
y_pred_batches.append(y_pred_batch)
if (batch_idx + 1) % gradient_accumulation_steps == 0: # (assumption: the number of batches is a multiple of gradient_accumulation_steps)
y_true = stack_vertically(y_true_batches)
y_pred = stack_vertically(y_pred_batches)
loss = loss_fn(y_true, y_pred)
loss.backward()
optimizer.step()
optimizer.zero_grad()
y_true_batches.clear()
y_pred_batches.clear()
另外,作为一个不相关的问题:由于梯度累积的目的是在内存受限的情况下模拟更大的批量大小,这是否意味着我也应该按比例增加学习率?
最佳答案
<强>1。两个程序的区别:
从概念上讲,您的两个实现是相同的:您为每个权重更新转发 gradient_accumulation_steps
批处理。
正如您已经观察到的,第二种方法比第一种方法需要更多的内存资源。
然而,有一点不同:通常,损失函数实现使用 mean
来减少批量损失。当您使用梯度累积(第一个实现)时,您减少了对每个小批量使用 mean
,但对累积的 gradient_accumulation_steps 使用
小批量。为确保累积梯度实现与大批量实现相同,您需要非常小心减少损失函数的方式。在许多情况下,您需要将累积损失除以 sum
gradient_accumulation_steps
。参见 this answer进行详细的实现。
<强>2。批量大小和学习率:学习率和批量大小确实相关。当增加批量大小时,通常会降低学习率。
参见,例如:
Samuel L. Smith、Pieter-Jan Kindermans、Chris Ying、Quoc V. Le,Don't Decay the Learning Rate, Increase the Batch Size (ICLR 2018)。
关于python - 关于梯度累积的说明,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70461130/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!