gpt4 book ai didi

c - 在优化 C 中的分段素筛时卡住了

转载 作者:行者123 更新时间:2023-12-05 04:37:15 25 4
gpt4 key购买 nike

我正在尝试用 C 语言实现一个高效的分段素数筛法。它基本上是埃拉托色尼筛法,但每个段都被分割成适合缓存的大小。

在我的版本中,有一个标志位数组,其中每一位都是一个连续的奇数。当每个位是已知质数的倍数时,通过使用 AND 进行屏蔽来删除它。

这一部分代码消耗了大约 90% 的运行时间。每一段脏代码都有我在评论中解释的原因,但整体操作非常简单。

  1. 抓取一个素数。
  2. 计算其比缓存 block 起点所代表的数稍大的平方和倍数。
  3. 拿大一点的。
  4. 删除该位,将基素数与自身相加两次,重复直到缓存 block 结束。

就是这样。

有一个名为primesieve 的程序可以非常快速地完成此操作。它比我的版本快大约 3 倍。我阅读了它关于算法及其代码的文档,并将任何合理的内容应用到我的代码中。

因为有一个已知的程序比我的快很多,我将进一步调查他们在做什么以及我没有做什么,但在此之前,我发布了这个问题以获得额外帮助,如果你能帮我找出答案哪个部分没有有效运行。

再说一次,这个单一的例程消耗了 90% 的运行时间,所以我真的很专注于让这部分运行得更快。

这是旧版本,发帖后我做了一些修改,这个在这个下面。注释仍然适用。

#include <stdlib.h>
#include <stdio.h>

//size of the cache block (64K)
#define C 0x10000

static unsigned sq(unsigned a) {
return a * a;
}

//`f` is the array of flags. `st` is the starting point being a multiple of
//`C * 16`. Each byte can hold 16 odd numbers, thus having `C` multiplied by 16.
//`p` is the array of prime numbers from 67 up to `sqrt(st + C * 16)`. Primes
//below 67 are handled specially by other routines.
__attribute__((noinline)) //Don't inline for testing.
static void sieve_bit(unsigned *f, unsigned st, unsigned *p) {
//Doing table access than computing the mask in runtime was about 15% faster
//on my machine. I'm guessing that probably the bit-shifts on x86 only being
//able to use the CL register as a variable counter creates a dependency
//when there is a series of shifts, making it slower than multiple L1 cache
//accesses.
static const unsigned m[] = {
~(1u << 0), ~(1u << 1), ~(1u << 2), ~(1u << 3), ~(1u << 4),
~(1u << 5), ~(1u << 6), ~(1u << 7), ~(1u << 8), ~(1u << 9),
~(1u << 10), ~(1u << 11), ~(1u << 12), ~(1u << 13), ~(1u << 14),
~(1u << 15), ~(1u << 16), ~(1u << 17), ~(1u << 18), ~(1u << 19),
~(1u << 20), ~(1u << 21), ~(1u << 22), ~(1u << 23), ~(1u << 24),
~(1u << 25), ~(1u << 26), ~(1u << 27), ~(1u << 28), ~(1u << 29),
~(1u << 30), ~(1u << 31)
};
unsigned p2 = sq(*p);
do {
unsigned r = st % *p;
//This calculates the starting point. The result of `n` will be an odd
//number multiple of `*p` a bit larger than `st`.
unsigned n = st + *p - r + (-(r & 1) & *p);
//If the square of `*p` is larger than `n`, use it instead.
if (p2 > n) {
n = p2;
}
//The loop is unrolled 8 times, which gave the fastest result on my
//machine.
for (;; n += *p * 16) {
//Jumps to the next stage when there are no space left for 8
//operations to be done. This could simply be a `break` followed by
//a loop, but this was slightly (1~3%) faster than the simpler
//alternative.
int d = st + C * 16 - n;
//as mentioned in the comments, the value of `d` relies on
//implementation dependent behaviour for 2's complement machines.
//`n` can be larger than `st + C * 16`, in which case the wrapped
//unsigned value is converted to a negative `int`.
if (d <= (int)*p * 14) {
if (d <= (int)*p * 6) {
if (d <= (int)*p * 2) {
if (d <= (int)*p * 0) goto L0; else goto L1;
} else {
if (d <= (int)*p * 4) goto L2; else goto L3;
}
} else {
if (d <= (int)*p * 10) {
if (d <= (int)*p * 8) goto L4; else goto L5;
} else {
if (d <= (int)*p * 12) goto L6; else goto L7;
}
}
}
//The multiples of primes are erased.
#define ur(i) do {\
unsigned _n = (n - st) / 2 + *p * i;\
f[_n / 32] &= m[_n % 32];\
} while (0)
ur(0); ur(1); ur(2); ur(3); ur(4); ur(5); ur(6); ur(7);
}
//Erase with the leftovers.
L7: ur(6);
L6: ur(5);
L5: ur(4);
L4: ur(3);
L3: ur(2);
L2: ur(1);
L1: ur(0);
L0:
p2 = sq(*++p);
#undef ur
} while (p2 < st + C * 16);
}

//This could break if `TscInvariant` CPUID is false, which is probably rare on
//modern machines?
static inline unsigned long long rdtscp() {
unsigned _;
return __builtin_ia32_rdtscp(&_);
}

//This isn't used in actuall code. Just a simple one for a test. Fill with prime
//numbers enough to sieve all 32-bit primes.
static inline void fillPrimes(unsigned *p) {
for (unsigned n = 67, c = 2; n <= 65521; n += c ^= 6) {
for (unsigned d = 5, c = 4; d * d <= n; d += c ^= 6) {
if (!(n % d)) goto next;
}
*p++ = n;
next:;
}
}

int main() {
unsigned p[8000];
fillPrimes(p);
unsigned f[C / sizeof(unsigned)];
puts("start sieve");
unsigned long long c = rdtscp();
for (int i = 0; i < 2000; ++i) {
volatile unsigned *vf = f;
sieve_bit((unsigned *)vf, C * 16 * i, p);
}
c = rdtscp() - c;
printf("%llu\n", c);
return 0;
}

休息了一下,发现循环里面有一些多余的计算,把它们去掉,速度提高了6~7%左右。

static void sieve_bit(unsigned *f, unsigned st, unsigned *p) {
static const unsigned m[] = {
~(1u << 0), ~(1u << 1), ~(1u << 2), ~(1u << 3), ~(1u << 4),
~(1u << 5), ~(1u << 6), ~(1u << 7), ~(1u << 8), ~(1u << 9),
~(1u << 10), ~(1u << 11), ~(1u << 12), ~(1u << 13), ~(1u << 14),
~(1u << 15), ~(1u << 16), ~(1u << 17), ~(1u << 18), ~(1u << 19),
~(1u << 20), ~(1u << 21), ~(1u << 22), ~(1u << 23), ~(1u << 24),
~(1u << 25), ~(1u << 26), ~(1u << 27), ~(1u << 28), ~(1u << 29),
~(1u << 30), ~(1u << 31)
};
unsigned p2 = sq(*p);
do {
unsigned n =
(p2 > st + *p * 2 ? p2 - st : *p - st % *p + (-(st % *p & 1) & *p)) / 2;
for (;; n += *p * 8) {
int d = C * 8 - (int)n;
if (d <= (int)*p * 7) {
if (d <= (int)*p * 3) {
if (d <= (int)*p * 1) {
if (d <= (int)*p * 0) goto L0; else goto L1;
} else {
if (d <= (int)*p * 2) goto L2; else goto L3;
}
} else {
if (d <= (int)*p * 5) {
if (d <= (int)*p * 4) goto L4; else goto L5;
} else {
if (d <= (int)*p * 6) goto L6; else goto L7;
}
}
}
#define ur(i) f[(n + *p * i) / 32] &= m[(n + *p * i) % 32]
ur(0); ur(1); ur(2); ur(3); ur(4); ur(5); ur(6); ur(7);
}
L7: ur(6);
L6: ur(5);
L5: ur(4);
L4: ur(3);
L3: ur(2);
L2: ur(1);
L1: ur(0);
L0:
p2 = sq(*++p);
#undef ur
} while (p2 < st + C * 16);
}

最佳答案

我添加了一个简单的基准测试框架来测试各种方法。事实证明展开并没有提高性能。原因可能是现代处理器预测分支,因此运行多次的简单循环可以全速运行,对于小素数就是这种情况,一旦素数变得足够大,同样可以正确预测立即中断的简单循环。

这是在我的笔记本电脑上具有相同性能的简化版本:

static void sieve_bit_3(unsigned *f, unsigned st, unsigned *pp) {
static const unsigned m[] = {
~(1u << 0), ~(1u << 1), ~(1u << 2), ~(1u << 3), ~(1u << 4),
~(1u << 5), ~(1u << 6), ~(1u << 7), ~(1u << 8), ~(1u << 9),
~(1u << 10), ~(1u << 11), ~(1u << 12), ~(1u << 13), ~(1u << 14),
~(1u << 15), ~(1u << 16), ~(1u << 17), ~(1u << 18), ~(1u << 19),
~(1u << 20), ~(1u << 21), ~(1u << 22), ~(1u << 23), ~(1u << 24),
~(1u << 25), ~(1u << 26), ~(1u << 27), ~(1u << 28), ~(1u << 29),
~(1u << 30), ~(1u << 31)
};
unsigned p = *pp;
unsigned p2 = sq(p);
do {
unsigned n = (p2 > st + p * 2 ? p2 - st : p - st % p + (-(st % p & 1) & p)) / 2;
for (; n < C * 8; n += p) {
f[n / 32] &= m[n % 32];
}
p2 = sq(p = *++pp);
} while (p2 < st + C * 16);
}

这是一个修改后的版本,测试更少,速度更快:

static void sieve_bit_6(unsigned *f, unsigned st, unsigned *pp) {
static const unsigned m[] = {
~(1u << 0), ~(1u << 1), ~(1u << 2), ~(1u << 3), ~(1u << 4),
~(1u << 5), ~(1u << 6), ~(1u << 7), ~(1u << 8), ~(1u << 9),
~(1u << 10), ~(1u << 11), ~(1u << 12), ~(1u << 13), ~(1u << 14),
~(1u << 15), ~(1u << 16), ~(1u << 17), ~(1u << 18), ~(1u << 19),
~(1u << 20), ~(1u << 21), ~(1u << 22), ~(1u << 23), ~(1u << 24),
~(1u << 25), ~(1u << 26), ~(1u << 27), ~(1u << 28), ~(1u << 29),
~(1u << 30), ~(1u << 31)
};
unsigned p, p2;
while (p = *pp++, (p2 = sq(p)) <= st + 2 * p) {
unsigned mod = st % p;
unsigned n = (p - mod + (-(mod & 1) & p)) / 2;
for (; n < C * 8; n += p) {
f[n / 32] &= m[n % 32];
}
}
while (p2 < st + C * 16) {
unsigned n = (p2 - st) / 2;
for (; n < C * 8; n += p) {
f[n / 32] &= m[n % 32];
}
p2 = sq(p = *pp++);
}
}

关于c - 在优化 C 中的分段素筛时卡住了,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/70729093/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com