- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在探索 How to use the DockerOperator in Apache Airflow教程。我已经设法使用 docker-compose 设置了 Airflow ,并且能够在我的 Airflow 浏览器中访问教程中提到的 docker_dag
。这是相同的代码。
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
from airflow.operators.docker_operator import DockerOperator
default_args = {
'owner' : 'airflow',
'description' : 'Use of the DockerOperator',
'depend_on_past' : False,
'start_date' : datetime(2018, 1, 3),
'email_on_failure' : False,
'email_on_retry' : False,
'retries' : 1,
'retry_delay' : timedelta(minutes=5)
}
with DAG('docker_dag', default_args=default_args, schedule_interval="5 * * * *", catchup=False) as dag:
t1 = BashOperator(
task_id='print_current_date',
bash_command='date'
)
t2 = DockerOperator(
task_id='docker_command',
image='centos:latest',
api_version='auto',
auto_remove=True,
command="/bin/sleep 30",
docker_url="unix://var/run/docker.sock",
network_mode="bridge"
)
t3 = BashOperator(
task_id='print_hello',
bash_command='echo "hello world"'
)
t1 >> t2 >> t3
我在下面执行 tast t2 (DockerOperator) 时遇到错误。
Traceback (most recent call last):
File "/home/airflow/.local/lib/python3.7/site-packages/airflow/providers/docker/operators/docker.py", line 366, in execute
self.cli = self._get_cli()
File "/home/airflow/.local/lib/python3.7/site-packages/airflow/providers/docker/operators/docker.py", line 397, in _get_cli
base_url=self.docker_url, version=self.api_version, tls=tls_config, timeout=self.timeout
File "/home/airflow/.local/lib/python3.7/site-packages/docker/api/client.py", line 197, in __init__
self._version = self._retrieve_server_version()
File "/home/airflow/.local/lib/python3.7/site-packages/docker/api/client.py", line 222, in _retrieve_server_version
f'Error while fetching server API version: {e}'
docker.errors.DockerException: Error while fetching server API version: ('Connection aborted.', FileNotFoundError(2, 'No such file or directory'))
[2022-08-02, 09:02:50 UTC] {taskinstance.py:1420} INFO - Marking task as FAILED. dag_id=docker_dag, task_id=docker_command, execution_date=20220802T085747, start_date=20220802T090250, end_date=20220802T090250
[2022-08-02, 09:02:50 UTC] {standard_task_runner.py:97} ERROR - Failed to execute job 78 for task docker_command (Error while fetching server API version: ('Connection aborted.', FileNotFoundError(2, 'No such file or directory')); 2516)
我在 github 问题列表和 stackover 上尝试了很多答案,例如更改 docker.sock 文件权限、重新启动 docker 和重建 docker 镜像以在新容器中运行。
分享 docker-compose 文件以供引用:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Basic Airflow cluster configuration for CeleryExecutor with Redis and PostgreSQL.
#
# WARNING: This configuration is for local development. Do not use it in a production deployment.
#
# This configuration supports basic configuration using environment variables or an .env file
# The following variables are supported:
#
# AIRFLOW_IMAGE_NAME - Docker image name used to run Airflow.
# Default: apache/airflow:2.3.3
# AIRFLOW_UID - User ID in Airflow containers
# Default: 50000
# Those configurations are useful mostly in case of standalone testing/running Airflow in test/try-out mode
#
# _AIRFLOW_WWW_USER_USERNAME - Username for the administrator account (if requested).
# Default: airflow
# _AIRFLOW_WWW_USER_PASSWORD - Password for the administrator account (if requested).
# Default: airflow
# _PIP_ADDITIONAL_REQUIREMENTS - Additional PIP requirements to add when starting all containers.
# Default: ''
#
# Feel free to modify this file to suit your needs.
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.3.3}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: LocalExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# For backward compatibility, with Airflow <2.3
# AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
# AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'true'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs
- ./plugins:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
# redis:
# condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always
# redis:
# image: redis:latest
# expose:
# - 6379
# healthcheck:
# test: ["CMD", "redis-cli", "ping"]
# interval: 5s
# timeout: 30s
# retries: 50
# restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
# airflow-worker:
# <<: *airflow-common
# command: celery worker
# healthcheck:
# test:
# - "CMD-SHELL"
# - 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
# interval: 10s
# timeout: 10s
# retries: 5
# environment:
# <<: *airflow-common-env
# # Required to handle warm shutdown of the celery workers properly
# # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
# DUMB_INIT_SETSID: "0"
# restart: always
# depends_on:
# <<: *airflow-common-depends-on
# airflow-init:
# condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- .:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
# flower:
# <<: *airflow-common
# command: celery flower
# profiles:
# - flower
# ports:
# - 5555:5555
# healthcheck:
# test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
# interval: 10s
# timeout: 10s
# retries: 5
# restart: always
# depends_on:
# <<: *airflow-common-depends-on
# airflow-init:
# condition: service_completed_successfully
volumes:
postgres-db-volume:
有人可以帮我吗?
最佳答案
想通了,我们需要将它添加到 docker-compose 文件中,并在下面授予它正确的权限
- //var/run/docker.sock:/var/run/docker.sock
sudo chmod 666 /var/run/docker.sock
这是 docker-compose 文件的通用部分现在的样子:
volumes:
- ./dags:/opt/airflow/dags
- ./logs:/opt/airflow/logs
- ./plugins:/opt/airflow/plugins
- //var/run/docker.sock:/var/run/docker.sock
关于docker.错误.DockerException : Error while fetching server API version or Permission denied error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/73206830/
我正在运行此代码并在没有互联网连接的情况下进行测试: fetch(url, options) .then(res => { // irrelevant, as catch happens
function fetchHandler(evt) { console.log('request:' + evt.request.url); dealWithRequest(evt)
我在 AdventureWorks2016 上执行了两个示例查询,并得到了相同的结果。那么什么时候应该使用 NEXT 或 FIRST 关键字? select LastName + ' ' + Firs
我有以下查询: @Query("SELECT new de.projectemployee.ProjectEmployee(employee) " + "FROM ProjectEmpl
我正在尝试使用 fetch on react 来实现客户端登录。 我正在使用护照进行身份验证。我使用的原因 fetch而不是常规 form.submit() , 是因为我希望能够从我的快速服务器接收错
我正在尝试将我的 Aurelia 项目从 beta 版本升级到 3 月版本。 我遇到的错误之一是: Cannot find name 'Request'. 谷歌搜索会在 GitHub 上显示此问题:h
见标题。在我们的react项目中调用fetch时,一位(现已离职)开发人员最初使用from fetch to window.fetch。我不确定两者之间的区别,也无法在网上找到任何结论(W3Schoo
这个问题在这里已经有了答案: HTTP status code 401 even though I’m sending credentials in the request (1 个回答) How
这是代码片段: var fetch = require("node-fetch"); var fetchMock = require("fetch-mock"); function setupMock
我在这里看到了两种不同的抓取方式: https://github.com/github/fetch https://github.com/matthew-andrews/isomorphic-fetc
以下git命令有什么区别? git fetch origin 和 git fetch --all 从命令行运行它们看起来就像它们做同样的事情。 最佳答案 git fetch origin 仅从 ori
我有一个不断改变值的动态 json。我想用该数据绘制图表所以我将动态数据存储到数组然后用该数组绘制图表。目前我创建了 serinterval 用于从 api 获取新数据。但问题是如果新数据没有,它会再
我有一个很大的 JSON blob,我想预先加载我的网页。为此,我添加了 到我的页面。我也有一个 JS 请求来获取相同的 blob。 这不起作用,控制台报告: [Warning] The resour
我们在单页 JavaScript 应用程序发出 fetch 请求时遇到不一致的客户端错误。值得注意的是,它们都是同源请求。 let request = new Request(url, options
我是 ReactJS 的新手,我一直在阅读如何从 api 获取和发布数据。我见过这两个,但我不知道该用什么以及两者之间有什么区别?我读了它,但我不确定我会用什么。谢谢! react-fetch wha
Doctrine中注解@ManyToOne中的fetch="EAGER"和fetch="LAZY"有什么区别? /** * @ManyToOne(targetEntity="Cart", casca
我想要获取一个 api,然后调用另一个 api。在 javascript 中使用这样的代码是否明智? fetch(url, { method: 'get', }).then(function(re
我有一个组件,它依赖于 2 个端点来检索所需程序的名称。我有 2 个端点。第一个端点返回程序列表,它是一个对象数组。目前,它仅返回 4 个节目(2 个节目 ID 为“13”,另外两个节目 ID 为“1
我的应用程序从外部源(配置文件)接收查询,因此它必须从查询结果中获取列。我有一些代码: typedef union _DbField { text text[512]; sword i
我有一个实体A,它与实体B有对多关系。 Entity A -->> Entity B 我需要在多个屏幕上引用一对多关系的计数。此外,我可以多次从 Entity A
我是一名优秀的程序员,十分优秀!