- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想为二维矩阵编写外推样条函数。我现在拥有的是一维数组的外推样条函数,如下所示。 scipy.interpolate.InterpolatedUnivariateSpline()用来。
import numpy as np
import scipy as sp
def extrapolated_spline_1D(x0,y0):
x0 = np.array(x0)
y0 = np.array(y0)
assert x0.shape == y.shape
spline = sp.interpolate.InterpolatedUnivariateSpline(x0,y0)
def f(x, spline=spline):
return np.select(
[(x<x0[0]), (x>x0[-1]), np.ones_like(x,dtype='bool')],
[np.zeros_like(x)+y0[0], np.zeros_like(x)+y0[-1], spline(x)])
return f
它采用定义函数的位置 x0 和相应值的 y0。当 x < x0[0], y = y0[0];当 x > x0[-1] 时,y = y0[-1]。这里,假设 x0 是升序排列。
我想要一个类似的外推样条函数来使用 np.select() 处理二维矩阵如在 extrapolated_spline_1D 中。我以为scipy.interpolate.RectBivariateSpline()可能会有所帮助,但我不确定该怎么做。
作为引用,我当前的 extrapolated_spline_2D 版本非常慢。基本思路是:
(1)首先,给定一维数组x0、y0和二维数组z2d0作为输入,使nx0个extrapolated_spline_1D函数,y0_spls,每个函数代表定义在y0上的一个层z2d0;
(2) 第二,对于不在网格上的点(x,y),计算nx0个值,每个值等于y0_spls[i](y);
(3) 第三,用extrapolated_spline_1D 拟合(x0, y0_spls[i](y)) 到x_spl 并返回x_spl(x) 作为最终结果。
def extrapolated_spline_2D(x0,y0,z2d0):
'''
x0,y0 : array_like, 1-D arrays of coordinates in strictly monotonic order.
z2d0 : array_like, 2-D array of data with shape (x.size,y.size).
'''
nx0 = x0.shape[0]
ny0 = y0.shape[0]
assert z2d0.shape == (nx0,ny0)
# make nx0 splines, each of which stands for a layer of z2d0 on y0
y0_spls = [extrapolated_spline_1D(y0,z2d0[i,:]) for i in range(nx0)]
def f(x, y):
'''
f takes 2 arguments at the same time --> x, y have the same dimention
Return: a numpy ndarray object with the same shape of x and y
'''
x = np.array(x,dtype='f4')
y = np.array(y,dtype='f4')
assert x.shape == y.shape
ndim = x.ndim
if ndim == 0:
'''
Given a point on the xy-plane.
Make ny = 1 splines, each of which stands for a layer of new_xs on x0
'''
new_xs = np.array([y0_spls[i](y) for i in range(nx0)])
x_spl = extrapolated_spline_1D(x0,new_xs)
result = x_spl(x)
elif ndim == 1:
'''
Given a 1-D array of points on the xy-plane.
'''
ny = len(y)
new_xs = np.array([y0_spls[i](y) for i in range(nx0)]) # new_xs.shape = (nx0,ny)
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x[i]) for i in range(ny)])
else:
'''
Given a multiple dimensional array of points on the xy-plane.
'''
x_flatten = x.flatten()
y_flatten = y.flatten()
ny = len(y_flatten)
new_xs = np.array([y0_spls[i](y_flatten) for i in range(nx0)])
x_spls = [extrapolated_spline_1D(x0,new_xs[:,i]) for i in range(ny)]
result = np.array([x_spls[i](x_flatten[i]) for i in range(ny)]).reshape(y.shape)
return result
return f
最佳答案
我做过类似的工作,叫做 GlobalSpline2D here ,并且它在线性、三次或五次样条下都能完美地工作。
基本上是继承了interp2d ,并通过 InterpolatedUnivariateSpline 促进二维外推的使用.它们都是 scipy 内部函数。
其用法引用document以及 call method interp2d 的。
关于用于 2D 外推样条函数的 Python Scipy?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34053174/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!