- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在网上看,我仍然对线性助推器 gblinear
到底是什么感到困惑,我不是 alone .
在 documentation 之后它只有 3 个参数 lambda
、lambda_bias
和 alpha
- 也许它应该说“附加参数”。
如果我理解正确,那么线性 boost 器会进行(相当标准的)线性 boost (带有正则化)。在这种情况下,我只能理解上面的 3 个参数和 eta
( boost 率)。这也是它在 github 上的描述方式.
尽管如此,我发现树参数 gamma
、max_depth
和 min_child_weight
也对算法有影响。
这怎么可能?网络上是否有对线性增压器的完全清楚的描述?
看我的例子:
library(xgboost)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
然后设置
set.seed(100)
model <- xgboost(data = train$data, label = train$label, nrounds = 5,
objective = "binary:logistic",
params = list(booster = "gblinear", eta = 0.5, lambda = 1, lambda_bias = 1,gamma = 2,
early_stopping_rounds = 3))
给予
> [1] train-error:0.018271 [2] train-error:0.003071
> [3] train-error:0.001075 [4] train-error:0.001075
> [5] train-error:0.000614
当 gamma=1
set.seed(100)
model <- xgboost(data = train$data, label = train$label, nrounds = 5,
objective = "binary:logistic",
params = list(booster = "gblinear", eta = 0.5, lambda = 1, lambda_bias = 1,gamma = 1,
early_stopping_rounds = 3))
导致
> [1] train-error:0.013051 [2] train-error:0.001842
> [3] train-error:0.001075 [4] train-error:0.001075
> [5] train-error:0.001075
这是另一个“路径”。
类似于 max_depth
:
set.seed(100)
model <- xgboost(data = train$data, label = train$label, nrounds = 5,
objective = "binary:logistic",
params = list(booster = "gblinear", eta = 0.5, lambda = 1, lambda_bias = 1, max_depth = 3,
early_stopping_rounds = 3))
> [1] train-error:0.016122 [2] train-error:0.002764
> [3] train-error:0.001075 [4] train-error:0.001075
> [5] train-error:0.000768
和
set.seed(100)
model <- xgboost(data = train$data, label = train$label, nrounds = 10,
objective = "binary:logistic",
params = list(booster = "gblinear", eta = 0.5, lambda = 1, lambda_bias = 1, max_depth = 4,
early_stopping_rounds = 3))
> [1] train-error:0.014740 [2] train-error:0.004453
> [3] train-error:0.001228 [4] train-error:0.000921
> [5] train-error:0.000614
最佳答案
我还不如在运行 gblinear 的间隙做一些深蹲,观察结果几乎每次都在变化,并声称做深蹲会对算法产生影响:)
严肃地说,gblinear 目前使用的算法不是您的“相当标准的线性 boost ”。造成随机性的是在每次迭代期间更新梯度时使用无锁并行化('hogwild')。设置种子不会影响任何东西;并且只有在运行单线程 (nthread=1
) 时才能获得始终如一的可重现结果。我还建议不要使用使用最大可能数量的 OpenMP 线程的默认 nthread 设置来运行它,因为在许多系统上,它会由于线程拥塞而导致速度大大降低。 nthread
需要不高于物理内核数。
这种自由随机性可能会在某些情况下 boost 预测性能。但是,优点通常不会超过缺点。在某个时候,我将提交一个拉取请求,其中包含一个确定性并行化选项和一个在每个 boost 轮次中对功能选择进行一些额外控制的选项。
有关特定于助推器训练的所有可用参数的基本事实,请参阅 struct GBLinearTrainParam
的来源对于 gblinear 和 struct TrainParam
的来源对于 gbtree。
关于r - xgboost:线性 boost 器 gblinear 中使用了哪些参数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42783098/
是否可以计算 xgboost 模型的内部节点预测? R 包 gbm 提供了对每棵树的内部节点的预测。 然而,xgboost 输出仅显示对模型最后一片叶子的预测。 xgboost 输出: 请注意,质量列
我想知道哪个损失函数使用 XGBoost 进行多类分类。我找到了 in this question二元情况下逻辑分类的损失函数。 我认为对于多类情况,它可能与 GBM 中的相同(对于 K 类)whic
XGBoost 使用加法训练的方法,在该方法中对先前模型的残差进行建模。 虽然这是顺序的,那么它如何并行计算呢? 最佳答案 Xgboost 不会像您提到的那样并行运行多棵树,您需要在每棵树之后进行预测
我正在看下面的图片。 有人可以解释一下它们是如何计算的吗?我以为 N 是 -1,是 +1,但后来我不明白这个小女孩怎么有 0.1。但这对于树 2 也不起作用。 最佳答案 我同意@user1808924
我已经使用 Amazon Sagemaker 构建了一个 XGBoost 模型,但是我找不到任何可以帮助我解释模型并验证它是否学习了正确的依赖关系的东西。 通常,我们可以通过 python API (
这是我的代码: xgb <- xgboost(data = as.matrix(df_all_combined), label = as.matrix(target_tr
在 xgboost 中可以设置参数 weight对于 DMatrix .这显然是一个权重列表,其中每个值都是相应样本的权重。 我找不到有关这些权重如何在梯度提升过程中实际使用的任何信息。他们是否与 e
不工作: import warnings warnings.filterwarnings('ignore') 我得到的警告: [14:24:45] WARNING: C:/Jenkins/worksp
我有一个用 Python 训练的 XGBoost 二元分类器模型。 我想在不同的脚本环境 (MQL4) 中使用纯数学运算而不使用 XGBoost 库 (.predict) 从该模型生成新输入数据的输出
我有一个仅包含分类特征和分类标签的数据模型。 因此,当我在 XGBoost 中手动构建该模型时,我基本上会将特征转换为二进制列(使用 LabelEncoder 和 OneHotEncoder),并使用
我使用 XGBoost 的 python 实现。目标之一是rank:pairwise并且最小化成对损失( Documentation )。但是,它没有说明输出的范围。我看到 -10 到 10 之间的数
我遇到了一个奇怪的问题: 我通过 hyperopt 定义了我的 XGB 超参数 'max_depth' hp.choice('max_depth',range(2,20)) 但我得到了 'max_de
我是 R 编程语言新手,我需要运行“xgboost”进行一些实验。问题是我需要交叉验证模型并获得准确性,我发现两种方法可以给我不同的结果: 使用“插入符号”: library(mlbench) lib
选择 auc、error 或 logloss 作为 XGBoost 的 eval_metric 对其性能有何影响?假设数据不平衡。它如何影响准确度、召回率和精确度? 最佳答案 在不同的评估矩阵 之间进
我是 Python 中 XGBoost 的新手,所以如果这里的答案很明显,我深表歉意,但我正在尝试使用 panda 数据框并在 Python 中获取 XGBoost 来给我使用 Scikit-Lear
我知道您可以为不平衡的数据集设置 scale_pos_weight。然而,如何处理不平衡数据集中的多分类问题。我经历过https://datascience.stackexchange.com/que
我正在使用 xgboost 的功能 pred_contribs 以便为我的模型的每个样本获得某种可解释性(shapley 值)。 booster.predict(test, pred_contribs
在 xgboost 0.81 中 cox ph 生存模型的新实现中,如何指定事件的开始和结束时间? 谢谢 例如,R 等效函数是: cph_mod = coxph(Surv(Start, Stop, S
我正在 R 中建模 claim 频率(泊松分布)。我正在使用 gbm和 xgboost包,但似乎xgboost没有将曝光考虑在内的偏移参数? 在 gbm ,人们会按如下方式考虑暴露: gbm.fit(
xgboost 包允许构建一个随机森林(实际上,它选择列的随机子集来为整棵树的 split 选择一个变量,而不是为了点头,因为它是算法的经典版本,但它可以忍受)。但是对于回归,似乎只使用了森林中的一棵
我是一名优秀的程序员,十分优秀!