gpt4 book ai didi

python - 如何用python拟合非线性函数?

转载 作者:行者123 更新时间:2023-12-05 04:11:08 25 4
gpt4 key购买 nike

我用 R 编写了以下代码来估计三个系数(a、b 和 c):

y <- c(120, 125, 158, 300, 350, 390, 2800, 5900, 7790)
t <- 1:9
fit <- nls(y ~ a * (((b + c)^2/b) * exp(-(b + c) * t))/(1 + (c/b) *
exp(-(b + c) * t))^2, start = list(a = 17933, b = 0.01, c = 0.31))

我得到了这个结果

> summary(fit )

Formula: y ~ a * (((b + c)^2/b) * exp(-(b + c) * t))/(1 + (c/b) * exp(-(b +
c) * t))^2

Parameters:
Estimate Std. Error t value Pr(>|t|)
a 2.501e+04 2.031e+03 12.312 1.75e-05 ***
b 1.891e-05 1.383e-05 1.367 0.221
c 1.254e+00 1.052e-01 11.924 2.11e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 248.8 on 6 degrees of freedom

Number of iterations to convergence: 33
Achieved convergence tolerance: 6.836e-06

如何用 Python 做同样的事情?

最佳答案

您可以使用 curve_fit,它会给出相同的结果:

import scipy.optimize as optimization
import numpy as np

y = np.array([120, 125, 158, 300, 350, 390, 2800, 5900, 7790])
t = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
start = np.array([17933, 0.01, 0.31])

def f(t,a,b,c):
num = a*(np.exp(-t*(b+c))*np.power(b+c, 2)/b)
denom = np.power(1+(c/b)*np.exp(-t*(b+c)), 2)
return num/denom

print(optimization.curve_fit(f, t, y, start))
#(array([ 2.50111448e+04, 1.89129922e-05, 1.25426156e+00]), array([[ 4.12657233e+06, 2.58151776e-02, -2.00881091e+02],
# [ 2.58151776e-02, 1.91318685e-10, -1.44733425e-06],
# [ -2.00881091e+02, -1.44733425e-06, 1.10654268e-02]]))

关于python - 如何用python拟合非线性函数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43253646/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com