gpt4 book ai didi

keras - 如何使用 VGG-16 中的预训练特征作为 Keras 中 GlobalAveragePooling2D() 层的输入

转载 作者:行者123 更新时间:2023-12-05 04:10:43 25 4
gpt4 key购买 nike

是否可以使用 VGG-16 中的预训练模型特征并传递给 Keras 中其他模型的 GlobalAveragePooling2D() 层?

存储VGG-16网络离线特征的示例代码:

model = applications.VGG16(include_top=False, weights='imagenet')
bottleneck_features_train = model.predict(input)

顶级模型的示例代码:

model = Sequential()
model.add(GlobalAveragePooling2D()) # Here I want to use pre-trained feature from VGG-16 net as input.

我不能使用 Flatten() 层,因为我想预测具有多类的多标签。

最佳答案

当然,你绝对可以。您有几个选择:

pooling kwarg

在 VGG16 构造函数中使用 pooling kwarg,它用指定类型替换最后一个池化层。即

model_base = keras.applications.vgg16.VGG16(include_top=False, input_shape=(*IMG_SIZE, 3), weights='imagenet', pooling="avg")

向输出添加图层

您还可以向预训练模型添加更多层:

from keras.models import Model

model_base = keras.applications.vgg16.VGG16(include_top=False, input_shape=(*IMG_SIZE, 3), weights='imagenet')
output = model_base.output
output = GlobalAveragePooling2D()(output)
# Add any other layers you want to `output` here...
model = Model(model_base.input, output)
for layer in model_base.layers:
layer.trainable = False

最后一行卡住了预训练层,以便您保留预训练模型的特征并只训练新层。

我写了一篇博文,介绍了使用预训练模型并将其扩展到处理各种图像分类问题的基础知识;它还提供了一些可能提供更多上下文的工作代码示例的链接:http://innolitics.com/10x/pretrained-models-with-keras/

关于keras - 如何使用 VGG-16 中的预训练特征作为 Keras 中 GlobalAveragePooling2D() 层的输入,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44091023/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com