gpt4 book ai didi

Python - 带子图的 blit 仅绘制最后一个子图

转载 作者:行者123 更新时间:2023-12-05 04:10:39 33 4
gpt4 key购买 nike

我正在尝试在我的 python 应用程序中实时绘制多个子图。理想情况下,我还应该能够在每个子图中绘制多条线,但为了简单起见,我假设每个子图中绘制一条线。为了有效地做到这一点(我正在寻找快速绘图),我试图将我在网上找到的一个例子 ( https://taher-zadeh.com/speeding-matplotlib-plotting-times-real-time-monitoring-purposes/ ) 扩展到我的案例中。我的代码是:

import time    
# for Mac OSX
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pylab as plt
import random

def test_fps(use_blit=True):

ax1.cla()
ax1.set_title('Sensor Input vs. Time -')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Sensor Input (mV)')
ax2.cla()
ax2.set_title('Sensor Input vs. Time -' )
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Sensor Input (mV)')
ax3.cla()
ax3.set_title('Sensor Input vs. Time -')
ax3.set_xlabel('Time (s)')
ax3.set_ylabel('Sensor Input (mV)')
ax4.cla()
ax4.set_title('Sensor Input vs. Time -')
ax4.set_xlabel('Time (s)')
ax4.set_ylabel('Sensor Input (mV)')

plt.ion() # Set interactive mode ON, so matplotlib will not be blocking the window
plt.show(False) # Set to false so that the code doesn't stop here

cur_time = time.time()
ax1.hold(True)
ax2.hold(True)
ax3.hold(True)
ax4.hold(True)

x, y = [], []
times = [time.time() - cur_time] # Create blank array to hold time values
y.append(0)

line1, = ax1.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line2, = ax2.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line3, = ax3.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line4, = ax4.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")


fig.show()
fig.canvas.draw()

if use_blit:
background1 = fig.canvas.copy_from_bbox(ax1.bbox) # cache the background
background2 = fig.canvas.copy_from_bbox(ax2.bbox) # cache the background
background3 = fig.canvas.copy_from_bbox(ax3.bbox) # cache the background
background4 = fig.canvas.copy_from_bbox(ax4.bbox) # cache the background

tic = time.time()

niter = 200
i = 0
while i < niter:

fields = random.random() * 100

times.append(time.time() - cur_time)
y.append(fields)

# this removes the tail of the data so you can run for long hours. You can cache this
# and store it in a pickle variable in parallel.

if len(times) > 50:
del y[0]
del times[0]

xmin, xmax, ymin, ymax = [min(times) / 1.05, max(times) * 1.1, -5,110]

# feed the new data to the plot and set the axis limits again
plt.axis([xmin, xmax, ymin, ymax])

if use_blit:
fig.canvas.restore_region(background1) # restore background
line1.set_xdata(times)
line1.set_ydata(y)
ax1.draw_artist(line1) # redraw just the points
fig.canvas.blit(ax1.bbox) # fill in the axes rectangle


fig.canvas.restore_region(background2) # restore background
line2.set_xdata(times)
line2.set_ydata(y)
ax2.draw_artist(line2) # redraw just the points
fig.canvas.blit(ax2.bbox)

fig.canvas.restore_region(background3) # restore background
line3.set_xdata(times)
line3.set_ydata(y)
ax3.draw_artist(line3) # redraw just the points
fig.canvas.blit(ax3.bbox)

fig.canvas.restore_region(background4) # restore background
line4.set_xdata(times)
line4.set_ydata(y)
ax4.draw_artist(line4) # redraw just the points
fig.canvas.blit(ax4.bbox)

else:
fig.canvas.draw()

fig.canvas.flush_events()

i += 1

fps = niter / (time.time() - tic)
return fps

fig = plt.figure()
ax1 = fig.add_subplot(4, 1, 1)
ax2 = fig.add_subplot(4, 1, 2)
ax3 = fig.add_subplot(4, 1, 3)
ax4 = fig.add_subplot(4, 1, 4)
fps1 = test_fps(use_blit=True)

此代码的问题在于它仅绘制到最后的子图中,而将其他子图留空。

enter image description here

我是 python 的新手,我想这是一个非常愚蠢的问题,但我还没有弄明白,所以每个提示都会对我很有帮助。谢谢

最佳答案

在当前实现中,您仅为最后一个图设置轴限制,即 plt.axis([xmin, xmax, ymin, ymax]) 适用于最后一个事件子图。

相反,您需要将所有轴 ax1 更新为 ax4

ax1.axis([xmin, xmax, ymin, ymax])
ax2.axis([xmin, xmax, ymin, ymax])
ax3.axis([xmin, xmax, ymin, ymax])
ax4.axis([xmin, xmax, ymin, ymax])

让他们的极限跟随数据。

此外,在 blitting 条件之外更新数据似乎是有益的,这样人们就可以在没有 blitting 的情况下比较 blitting。

完整代码:

import time    
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pylab as plt
import random

def test_fps(use_blit=True):

ax1.cla()
ax1.set_title('Sensor Input vs. Time -')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Sensor Input (mV)')
ax2.cla()
ax2.set_title('Sensor Input vs. Time -' )
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Sensor Input (mV)')
ax3.cla()
ax3.set_title('Sensor Input vs. Time -')
ax3.set_xlabel('Time (s)')
ax3.set_ylabel('Sensor Input (mV)')
ax4.cla()
ax4.set_title('Sensor Input vs. Time -')
ax4.set_xlabel('Time (s)')
ax4.set_ylabel('Sensor Input (mV)')

plt.ion() # Set interactive mode ON, so matplotlib will not be blocking the window
plt.show(False) # Set to false so that the code doesn't stop here

cur_time = time.time()
# ax1.hold(True)
# ax2.hold(True)
# ax3.hold(True)
# ax4.hold(True)

x, y = [], []
times = [time.time() - cur_time] # Create blank array to hold time values
y.append(0)

line1, = ax1.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line2, = ax2.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line3, = ax3.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")
line4, = ax4.plot(times, y, '.-', alpha=0.8, color="gray", markerfacecolor="red")


fig.show()
fig.canvas.draw()

if use_blit:
background1 = fig.canvas.copy_from_bbox(ax1.bbox) # cache the background
background2 = fig.canvas.copy_from_bbox(ax2.bbox) # cache the background
background3 = fig.canvas.copy_from_bbox(ax3.bbox) # cache the background
background4 = fig.canvas.copy_from_bbox(ax4.bbox) # cache the background

tic = time.time()

niter = 200
i = 0
while i < niter:

fields = random.random() * 100

times.append(time.time() - cur_time)
y.append(fields)

# this removes the tail of the data so you can run for long hours. You can cache this
# and store it in a pickle variable in parallel.

if len(times) > 50:
del y[0]
del times[0]

xmin, xmax, ymin, ymax = [min(times) / 1.05, max(times) * 1.1, -5,110]

# feed the new data to the plot and set the axis limits again
ax1.axis([xmin, xmax, ymin, ymax])
ax2.axis([xmin, xmax, ymin, ymax])
ax3.axis([xmin, xmax, ymin, ymax])
ax4.axis([xmin, xmax, ymin, ymax])

line1.set_data(times, y)
line2.set_data(times, y)
line3.set_data(times, y)
line4.set_data(times, y)

if use_blit:
fig.canvas.restore_region(background1) # restore background
ax1.draw_artist(line1) # redraw just the points
fig.canvas.blit(ax1.bbox) # fill in the axes rectangle

fig.canvas.restore_region(background2) # restore background
ax2.draw_artist(line2) # redraw just the points
fig.canvas.blit(ax2.bbox)

fig.canvas.restore_region(background3) # restore background
ax3.draw_artist(line3) # redraw just the points
fig.canvas.blit(ax3.bbox)

fig.canvas.restore_region(background4) # restore background
ax4.draw_artist(line4) # redraw just the points
fig.canvas.blit(ax4.bbox)

else:
fig.canvas.draw()

fig.canvas.flush_events()

i += 1

fps = niter / (time.time() - tic)
return fps

fig = plt.figure()
ax1 = fig.add_subplot(4, 1, 1)
ax2 = fig.add_subplot(4, 1, 2)
ax3 = fig.add_subplot(4, 1, 3)
ax4 = fig.add_subplot(4, 1, 4)
fps1 = test_fps(use_blit=True)
print fps1

请注意,这在我的计算机上运行时没有以 10fps 的 blitting 和以 16 fps 的 blitting 运行。

关于Python - 带子图的 blit 仅绘制最后一个子图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44107777/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com